动态规划案例--斐波那契数列

动态规划是一种解决多阶段决策过程最优化问题的算法。它将原问题分解为若干个子问题,通过求解子问题的最优解来得到原问题的最优解。动态规划通常适用于具有重叠子问题和最优子结构性质的问题。

具体而言,动态规划的解决过程一般包括以下几个步骤:

1. 划分阶段:将原问题分解为若干个阶段,每个阶段对应一个决策。

2. 确定状态:确定每个阶段的状态,即问题的子问题。

3. 状态转移方程:确定状态转移方程,即如何从一个阶段转移到下一个阶段。

4. 初始状态:确定初始阶段的状态。

5. 计算最优解:通过递推的方式计算出每个阶段的最优解。

下面以求解斐波那契数列为例,介绍动态规划的实现方法。

斐波那契数列的递推公式为:f(n) = f(n-1) + f(n-2),其中f(0) = 0,f(1) = 1。

按照动态规划的步骤,我们可以得到以下代码实现:```c++

```

#include <iostream>
using namespace std;

int fib(int n) {
    int f[n+1];
    f[0] = 0;
    f[1] = 1;
    for (int i = 2; i <= n; i++) {
        f[i] = f[i-1] + f[i-2];
    }
    return f[n];
}

int main() {
    int n = 10;
    int result = fib(n);
    cout << "fibonacci(" << n << ") = " << result << endl;
    return 0;
}

输出结果为:

```
fibonacci(10) = 55
```

在这个例子中,我们使用了一个数组f来保存每个阶段的最优解,即f[i]表示第i个斐波那契数。通过递推的方式,我们可以不断更新数组f中的值,最终得到f[n]即为所求的斐波那契数列的第n项。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值