随着硅基流动提供了免费的 InternLM2.5-7B-Chat 服务(免费的 InternLM2.5-7B-Chat 真的很香),MindSearch 的部署与使用也就迎来了纯 CPU 版本,进一步降低了部署门槛。那就让我们来一起看看如何使用硅基流动的 API 来部署 MindSearch 吧。
MindSearch 部署到Github Codespace 和 Hugging Face Space
和原有的CPU版本相比区别是把internstudio换成了github codespace。
随着硅基流动提供了免费的 InternLM2.5-7B-Chat 服务(免费的 InternLM2.5-7B-Chat 真的很香),MindSearch 的部署与使用也就迎来了纯 CPU 版本,进一步降低了部署门槛。那就让我们来一起看看如何使用硅基流动的 API 来部署 MindSearch 吧。
1. 创建开发机 & 环境配置
打开codespace主页,选择blank template。
浏览器会自动在新的页面打开一个web版的vscode。
接下来的操作就和我们使用vscode基本没差别了。
然后我们新建一个目录用于存放 MindSearch 的相关代码,并把 MindSearch 仓库 clone 下来。在终端中运行下面的命令:
mkdir -p /workspaces/mindsearch cd /workspaces/mindsearch git clone https://github.com/InternLM/MindSearch.git cd MindSearch && git checkout b832275 && cd ..
接下来,我们创建一个 conda 环境来安装相关依赖。
# 创建环境 conda create -n mindsearch python=3.10 -y # 激活环境 conda activate mindsearch # 安装依赖 pip install -r /workspaces/mindsearch/MindSearch/requirements.txt
2. 获取硅基流动 API Key
因为要使用硅基流动的 API Key,所以接下来便是注册并获取 API Key 了。
首先,我们打开 https://account.siliconflow.cn/login 来注册硅基流动的账号(如果注册过,则直接登录即可)。
在完成注册后,打开 https://cloud.siliconflow.cn/account/ak 来准备 API Key。首先创建新 API 密钥,然后点击密钥进行复制,以备后续使用。
3. 启动 MindSearch
3.1 启动后端
由于硅基流动 API 的相关配置已经集成在了 MindSearch 中,所以我们可以直接执行下面的代码来启动 MindSearch 的后端。
export SILICON_API_KEY=第二步中复制的密钥 conda activate mindsearch cd /workspaces/mindsearch/MindSearch python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch
3.2 启动前端
在后端启动完成后,我们打开新终端运行如下命令来启动 MindSearch 的前端。
如果遇到了 timeout 的问题,可以按照 文档 换用 Bing 的搜索接口。
4. 部署到 HuggingFace Space
最后,我们来将 MindSearch 部署到 HuggingFace Space。
我们首先打开 https://huggingface.co/spaces ,并点击 Create new Space,如下图所示。
在输入 Space name 并选择 License 后,选择配置如下所示。
然后,我们进入 Settings,配置硅基流动的 API Key。如下图所示。
选择 New secrets,name 一栏输入 SILICON_API_KEY,value 一栏输入你的 API Key 的内容。
最后,我们先新建一个目录,准备提交到 HuggingFace Space 的全部文件。
# 创建新目录 mkdir -p /root/mindsearch/mindsearch_deploy # 准备复制文件 cd /root/mindsearch cp -r /root/mindsearch/MindSearch/mindsearch /root/mindsearch/mindsearch_deploy cp /root/mindsearch/MindSearch/requirements.txt /root/mindsearch/mindsearch_deploy # 创建 app.py 作为程序入口 touch /root/mindsearch/mindsearch_deploy/app.py
其中,app.py 的内容如下:
import json import os import gradio as gr import requests from lagent.schema import AgentStatusCode os.system("python -m mindsearch.app --lang cn --model_format internlm_silicon &") PLANNER_HISTORY = [] SEARCHER_HISTORY = [] def rst_mem(history_planner: list, history_searcher: list): ''' Reset the chatbot memory. ''' history_planner = [] history_searcher = [] if PLANNER_HISTORY: PLANNER_HISTORY.clear() return history_planner, history_searcher def format_response(gr_history, agent_return): if agent_return['state'] in [ AgentStatusCode.STREAM_ING, AgentStatusCode.ANSWER_ING ]: gr_history[-1][1] = agent_return['response'] elif agent_return['state'] == AgentStatusCode.PLUGIN_START: thought = gr_history[-1][1].split('```')[0] if agent_return['response'].startswith('```'): gr_history[-1][1] = thought + '\n' + agent_return['response'] elif agent_return['state'] == AgentStatusCode.PLUGIN_END: thought = gr_history[-1][1].split('```')[0] if isinstance(agent_return['response'], dict): gr_history[-1][ 1] = thought + '\n' + f'```json\n{json.dumps(agent_return["response"], ensure_ascii=False, indent=4)}\n```' # noqa: E501 elif agent_return['state'] == AgentStatusCode.PLUGIN_RETURN: assert agent_return['inner_steps'][-1]['role'] == 'environment' item = agent_return['inner_steps'][-1] gr_history.append([ None, f"```json\n{json.dumps(item['content'], ensure_ascii=False, indent=4)}\n```" ]) gr_history.append([None, '']) return def predict(history_planner, history_searcher): def streaming(raw_response): for chunk in raw_response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b'\n'): if chunk: decoded = chunk.decode('utf-8') if decoded == '\r': continue if decoded[:6] == 'data: ': decoded = decoded[6:] elif decoded.startswith(': ping - '): continue response = json.loads(decoded) yield (response['response'], response['current_node']) global PLANNER_HISTORY PLANNER_HISTORY.append(dict(role='user', content=history_planner[-1][0])) new_search_turn = True url = 'http://localhost:8002/solve' headers = {'Content-Type': 'application/json'} data = {'inputs': PLANNER_HISTORY} raw_response = requests.post(url, headers=headers, data=json.dumps(data), timeout=20, stream=True) for resp in streaming(raw_response): agent_return, node_name = resp if node_name: if node_name in ['root', 'response']: continue agent_return = agent_return['nodes'][node_name]['detail'] if new_search_turn: history_searcher.append([agent_return['content'], '']) new_search_turn = False format_response(history_searcher, agent_return) if agent_return['state'] == AgentStatusCode.END: new_search_turn = True yield history_planner, history_searcher else: new_search_turn = True format_response(history_planner, agent_return) if agent_return['state'] == AgentStatusCode.END: PLANNER_HISTORY = agent_return['inner_steps'] yield history_planner, history_searcher return history_planner, history_searcher with gr.Blocks() as demo: gr.HTML("""<h1 align="center">MindSearch Gradio Demo</h1>""") gr.HTML("""<p style="text-align: center; font-family: Arial, sans-serif;">MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance. You can deploy your own Perplexity.ai-style search engine using either closed-source LLMs (GPT, Claude) or open-source LLMs (InternLM2.5-7b-chat).</p>""") gr.HTML(""" <div style="text-align: center; font-size: 16px;"> <a href="https://github.com/InternLM/MindSearch" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">🔗 GitHub</a> <a href="https://arxiv.org/abs/2407.20183" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">📄 Arxiv</a> <a href="https://huggingface.co/papers/2407.20183" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">📚 Hugging Face Papers</a> <a href="https://huggingface.co/spaces/internlm/MindSearch" style="text-decoration: none; color: #4A90E2;">🤗 Hugging Face Demo</a> </div> """) with gr.Row(): with gr.Column(scale=10): with gr.Row(): with gr.Column(): planner = gr.Chatbot(label='planner', height=700, show_label=True, show_copy_button=True, bubble_full_width=False, render_markdown=True) with gr.Column(): searcher = gr.Chatbot(label='searcher', height=700, show_label=True, show_copy_button=True, bubble_full_width=False, render_markdown=True) with gr.Row(): user_input = gr.Textbox(show_label=False, placeholder='帮我搜索一下 InternLM 开源体系', lines=5, container=False) with gr.Row(): with gr.Column(scale=2): submitBtn = gr.Button('Submit') with gr.Column(scale=1, min_width=20): emptyBtn = gr.Button('Clear History') def user(query, history): return '', history + [[query, '']] submitBtn.click(user, [user_input, planner], [user_input, planner], queue=False).then(predict, [planner, searcher], [planner, searcher]) emptyBtn.click(rst_mem, [planner, searcher], [planner, searcher], queue=False) demo.queue() demo.launch(server_name='0.0.0.0', server_port=7860, inbrowser=True, share=True)
在最后,将 /root/mindsearch/mindsearch_deploy 目录下的文件(使用 git)提交到 HuggingFace Space 即可完成部署了。
将代码提交到huggingface space的流程如下:
首先创建一个有写权限的token。
然后从huggingface把空的代码仓库clone到codespace。
/workspaces/codespaces-blank
git clone https://huggingface.co/spaces/<你的名字>/<仓库名称>
# 把token挂到仓库上,让自己有写权限
git remote set-url space https://<你的名字>:<上面创建的token>@huggingface.co/spaces/<你的名字>/<仓库名称>
遇到这个错误
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
执行
export GIT_DISCOVERY_ACROSS_FILESYSTEM=1
遇到fatal: not a git repository (or any of the parent directories): .git
执行 git init
遇到 fatal: No such remote 'space'
要执行这个命令才对呢
git add .
git remote set-url origin https://dada517: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@huggingface.co/dada517/myMindSerach
是 origin不是spaces
现在codespace就是本地仓库,huggingface space是远程仓库,接下来使用方法就和常规的git一样了。
cd <仓库名称>
# 把刚才准备的文件都copy进来
cp /workspaces/mindsearch/mindsearch_deploy/* .
最终的文件目录是这样。
注意mindsearch文件夹其实是Mindsearch项目中的一个子文件夹,如果把这个Mindsearch的整个目录copy进来会有很多问题(git submodule无法提交代码,space中项目启动失败等)。
最后把代码提交到huggingface space会自动启动项目。
git add .
git commit -m "update"
git push
然后就可以测试啦。
终于ok啦,能部署在huggingface上感觉真棒啊!!!