【算法基础】第三章:搜索与图例

Chapter 3 搜索与图论

0:DFS和BFS的对比

数据结构空间复杂度最短性
DFSstackO(h)不具备
BFSqueueO(2^h)具备

其中:h是树的高度

1:深度优先搜索DFS

题目:排列数字

给定一个整数 n,将数字 1∼n 排成一排,按照字典序将所有的排列方法输出。

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
using namespace std;

const int N = 10;

int n;
int path[N];	// 记录当前的depth路径 
bool st[N];		// 记录是否被访问

void dfs(int u){
	if(u == n){
		// 
		for(int i=0;i<n;i++){
			cout<<path[i]<<" ";
		}
		puts("");
		return;
	}
	
	for(int i=1;i<=n;i++){
		if(!st[i]){
			// 没有访问过
			path[u] = i;
			st[i] = true;
			dfs(u+1);
			st[i] = false;
		}
	}
}

int main(){
	cin >> n;
	dfs(0);
	return 0;
}
/*
3

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
*/

2:宽度优先搜索BFS

题目:走迷宫

1代表没有路,0代表有路

从左上角移动至右下角 (n,m) 处,至少需要移动多少次。

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
using namespace std;

const int N = 110;

typedef pair<int,int> PII;

int n, m;
int g[N][N], d[N][N];
//d数组记录该点到左上角的距离
PII q[N*N], Prev[N][N];
//Prev数组记录到达该点最短路中的上一个点

int bfs(){
	int hh=0,tt=0;//队列的head和tail
	q[0] = {0,0};//初始左上角
	
	memset(d, -1, sizeof d);//初始距离左上角的距离为-1
	d[0][0] = 0;
	
	int dx[4]={-1,0,1,0}, dy[4]={0,1,0,-1};
    //搜索的四个方向
	
	while(hh<=tt){
		auto t = q[hh++];//取出head的数据
        
        //探索head的四个方向,是否可行
		for(int i=0;i<4;i++){
			int x = t.first+dx[i], y = t.second+dy[i];//当前x,y坐标
            //如果没超过范围,且,有路,且,第一次访问该点
			if(x>=0 && x<n && y>=0 && y<n && g[x][y]==0 && d[x][y]==-1){
				d[x][y] = d[t.first][t.second] + 1;//更新该点的最短路距离
				Prev[x][y]=t;//记录该点的上一个点,是t
				q[++tt] = {x,y};//tail增加该点坐标,压入队列
			}
		}
        //探索完整个队列,会退出循环
	}
    
    //输出最短路的经过的点
    int x=n-1, y=m-1;
	while(x||y){
		cout<<x<<" "<<y<<endl;
		auto t=Prev[x][y];
		x=t.first;
		y=t.second;
	}
    
	return d[n-1][m-1];
}

int main(){
	cin >> n >> m;
	for(int i=0;i<n;i++)
		for(int j=0;j<m;j++)
			cin>>g[i][j];
	
	cout<<bfs()<<endl;
	
	return 0;
}
/*
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0


4 4
3 4
2 4
2 3
2 2
2 1
2 0
1 0
8
*/

3:树与图的存储

树是无环连通图(特殊)

图的分类:(1)有向图;(2)无向图;

无向图是特殊的有向图

因此,针对树与图,最后只需要考虑有向图的存储

有向图的存储方法

【1】邻接矩阵

g[a,b]存储a到b

空间开销大,O(n^2)

【2】邻接表

图总共n个点,则有n个单链表

单链表中存储当前点可以到达的点的集合,次序无关

类似哈希表的拉链法

插入边[a,b]时,通常插入到a的单链表的head节点

4:树与图的BFS

图的BFS

题目:图中点的层次

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
using namespace std;

const int N = 1e5+10;
int n, m;
int h[N], e[N], ne[N], idx;
int d[N], q[N];

void add(int a, int b){
	e[idx] = b;		// 数据array中存放b 
	ne[idx] = h[a];	// b的编号在链表中先指向a的头节点的next 
	h[a] = idx;		// a的头节点的next重新指向b的编号 
	idx++;			// 更新下一次的编号 
}

int bfs(){
	int hh=0,tt=0;
	q[0]=1;
	
	memset(d, -1, sizeof d);
	d[1]=0;
	
	while(hh<=tt){
		int t=q[hh++];
		for(int i=h[t]; i!=-1; i=ne[i]){
			int j=e[i];
			if(d[j] == -1){
				d[j] = d[t]+1;
				q[++tt]=j;
			}
		}
	}
	return d[n];
}

int main(){
	cin>>n>>m;
	memset(h, -1, sizeof h);
	
	for(int i=0;i<m;i++){
		int a,b;
		cin>>a>>b;
		add(a,b);
	}
	
	cout<<bfs()<<endl; 
	
	return 0;
}
/*
4 5
1 2
2 3
3 4
1 3
1 4

1
*/

5:树与图的DFS

图的DFS

题目:树的中心

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
using namespace std;

const int N = 1e5+10, M = N*2;
int n, ans = N;
bool st[N];
int h[N], e[M], ne[M], idx;

void add(int a, int b){
	e[idx] = b;		// 数据array中存放b 
	ne[idx] = h[a];	// b的编号在链表中先指向a的头节点的next 
	h[a] = idx;		// a的头节点的next重新指向b的编号 
	idx++;			// 更新下一次的编号 
}

int dfs(int u){
	st[u] = 1;	// u已经搜过了
	
	int sum=1,res=0;	
	// 遍历u的链表 
	for(int i=h[u]; i!=-1; i=ne[i]){
		int j=e[i]; // 当前编号的数值
		if(!st[j]){
			//没有访问过
			int s = dfs(j); // s是子树的大小
			res = max(res,s); // 更新res为最大子树
			sum += s;	// 当前结点+所有子树的大小
		} 
	} 
    // 这个点删除后,剩余各个连通块中点数的最大值最小
	res = max(res, n-sum);	// res是最大子树,n-sum是向上走的节点数,即连通块中的最大值
	ans = min(ans, res);	//取所有连通块最大值的最小值
	
	return sum; // 返回当前结点+所有子树的大小
}

int main(){
	cin>>n;
	memset(h, -1, sizeof h);
	
	for(int i=0;i<n-1;i++){
		int a,b;
		cin>>a>>b;
		add(a,b);
		add(b,a);
		//无向边需要加两次
	}
	
	dfs(1);
	cout<<ans<<endl; 
	
	return 0;
}
/*
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6


4
*/

6:拓扑排序

只有有向图有拓扑序列

拓扑序列案例

1->2

2->3

1->3

有向无环图一定存在拓扑序列,即拓扑图

一个有向无环图,一定至少存在1个入度=0的点

求拓扑序列

1:入度=0的点,可以作为拓扑起点,则将其全部加入队列

2:根据BFS搜索

题目:有向图的拓扑排序

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
using namespace std;

const int N = 1e5+10;
int n, m;
int h[N], e[N], ne[N], idx;
int d[N], q[N];
//d数值表示i点的入度 

void add(int a, int b){
	e[idx] = b;		// 数据array中存放b 
	ne[idx] = h[a];	// b的编号在链表中先指向a的头节点的next 
	h[a] = idx;		// a的头节点的next重新指向b的编号 
	idx++;			// 更新下一次的编号 
}

int topsort(){
	int hh=0,tt=-1;
	for(int i=1;i<=n;i++){
		if(!d[i]){
			q[++tt]=i;
		}
	}
	
	while(hh<=tt){
		int t=q[hh++];
		
		for(int i=h[t]; i!=-1; i=ne[i]){
			int j=e[i];
			d[j]--;
			if(d[j]==0){
				q[++tt]=j;
			}
		}
	}
	return tt==n-1;
}

int main(){
	cin>>n>>m;
	memset(h, -1, sizeof h);
	
	for(int i=0;i<m;i++){
		int a,b;
		cin>>a>>b;
		add(a,b);
		d[b]++;
	}
	
	if(topsort()){
		for(int i=0;i<n;i++){
			cout<<q[i]<<" ";
		}
		puts("");
	}
	else puts("-1");
	
	return 0;
}
/*
3 3
1 2
2 3
1 3

1 2 3
*/

7:最短路问题

源点——起点,汇点——终点

n:点的数量,m:边的数量

稠密图:m和n^2是一个级别

稀疏图:m和n是一个级别

稠密图用邻接矩阵存储,稀疏图用邻接表存储

单源最短路:求一个点到其他所有点的最短距离

(1)所有边权重都是正数

​ 【1】朴素Dijkstra算法,时间复杂度O(n^2),适合稠密图(边多)

​ 【2】堆优化Dijkstra算法,时间复杂度O(mlogn),适合稀疏图

(2)存在负权重的边

​ 【1】Bellman-Ford算法,时间复杂度O(nm)

​ 【2】SPFA算法,平均时间复杂度O(m),最坏O(nm)

多源汇最短路:任选两个点,计算其最短距离

Floyd算法,时间复杂度O(n^3)

最短路问题的核心:建图,把具体问题抽象成最短路问题

最短路问题不区分有向图和无向图,只考虑有向图算法

朴素Dijkstra

【1】初始化距离,dist[1]=0,dist[i]=+∞

【2】当前已经确定最短距离的点进入s数组,迭代n次

①找到第一个不在s中的距离最近的点t

②将t加入到s中

③用t更新其他点的距离(dist[x] > dist[t] + w)

题目:求含有重边和自环的最短路

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
using namespace std;

const int N = 510;
int n, m;
int g[N][N], dist[N];	
// g记录每条边之间的距离,dist记录初始点到其他点的最短距离 
bool st[N];	// 记录n个点是否被访问 

int dijkstra(){
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;	//初始点到自身的距离是0 
	
	for(int i=0;i<n;i++){
		int t=-1;
		for(int j=1;j<=n;j++){
			if(!st[j] && (t==-1 || dist[t]>dist[j])){
				t=j;
				break;
			}
		}
		
		st[t] = 1;
		
		for(int j=1;j<=n;j++){
			dist[j] = min(dist[j], dist[t]+g[t][j]);
		}
	}
	
	if(dist[n] == 0x3f3f3f3f){
		return -1;	// 不可达这个点
	}
	return dist[n];
}

int main(){
	cin>>n>>m;
	memset(g, 0x3f, sizeof g);
	 
	while(m--){
		int a,b,c;
		cin>>a>>b>>c;
		g[a][b] = min(g[a][b], c); //消除重边,只留下最短的那个边 
	}
	cout<<dijkstra()<<endl;
	return 0;
}
/*
3 3
1 2 2
2 3 1
1 3 4

3
*/

堆优化Dijkstra

用堆实现找距离的最小值

堆的实现方式

【1】手写堆

【2】优先队列priority_queue(不支持修改元素)

题目:求含有重边和自环的最短路

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
# include <queue>
using namespace std;

const int N = 1e5+10;
int n, m;
int h[N], w[N], e[N], ne[N], idx, dist[N];
// w数组是点a链表中,点a到点b的权重
bool st[N];

typedef pair<int,int> PII;

void add(int a, int b, int c){
	e[idx] = b;
	w[idx] = c;
	ne[idx] = h[a];
	h[a] = idx;
	idx++;
}

int dijkstra(){
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;	//初始点到自身的距离是0 
	
	// 第一个元素是距离,第二个元素是结点编号 
	priority_queue<PII, vector<PII>, greater<PII>> heap;
	heap.push({0,1});
	
	while(heap.size()){
		// 取出队头元素 
		auto t = heap.top();
		heap.pop();
		
		int ver = t.second, distance = t.first;
		if(st[ver]){
			continue;
			// 当前结点已经被访问 
		}
		
		for(int i=h[ver]; i!=-1; i=ne[i]){
			int j=e[i];	//结点编号
			if(dist[j] > distance + w[i]){
				dist[j] = distance + w[i];
				heap.push({dist[j], j});
			} 
		}
	}
	
	if(dist[n] == 0x3f3f3f3f){
		return -1;	// 不可达 
	}
	return dist[n];
}

int main(){
	cin>>n>>m;
	memset(h, -1, sizeof h); // 初始化链表 
	 
	while(m--){
		int a,b,c;
		cin>>a>>b>>c;
		add(a,b,c); //优先队列,自动处理重边 
	}
	cout<<dijkstra()<<endl;
	return 0;
}
/*
3 3
1 2 2
2 3 1
1 3 4

3
*/

Bellman-Ford

for n times:

​ backup [array]

​ for all edges(a, b, w):

​ dist[b] = min (dist[b], backup[a]+w)

更新过程为松弛操作

如果图中有负权回路,就不一定有最短路

三角不等式

dist[b] <= dist[a] + w

题目:有边数限制的最短路

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
# include <queue>
using namespace std;

const int N = 510, M = 10010;
int n, m, k;
int dist[N], backup[N];

struct Edge{
	int a,b,w;
}edges[M];

int bellman_ford(){
	memset(dist, 0x3f, sizeof dist);
	dist[1]=0;
	
	for(int i=0;i<k;i++){
		memcpy(backup,dist,sizeof dist);
		for(int j=0;j<m;j++){
			int a=edges[j].a;
			int b=edges[j].b;
			int w=edges[j].w;
			dist[b] = min(dist[b],backup[a]+w);
		}
	}
	if(dist[n] > 0x3f3f3f3f / 2) return -1;
	return dist[n];
}

int main(){
	cin>>n>>m>>k;
	for(int i=0;i<m;i++){
		int a,b,w;
		cin>>a>>b>>w;
		edges[i]={a,b,w};
	}
	int t=bellman_ford();
	
	if(t==-1) puts("impossible");
	else cout<<t;
	return 0;
}
/*
3 3 1
1 2 1
2 3 1
1 3 3

3
*/

SPFA

适用于所有没有负环的问题,优化Bellman-Ford

只有dist[a]变小了,dist[b]才会改变

quene <- 1

while queue not null:

​ //第一步

​ t <- q.front

​ q.pop()

​ //第二步

​ 更新t的所有出边

​ queue <- b

题目:负权最短路

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
# include <queue>
using namespace std;

const int N = 1e5+10;
int n, m;
int h[N],w[N],e[N],ne[N],idx;
int dist[N];
bool st[N];

void add(int a,int b,int c){
	e[idx]=b;
	w[idx]=c;
	ne[idx]=h[a];
	h[a]=idx++;
}

int spfa(){
	memset(dist, 0x3f, sizeof dist);
	dist[1]=0;
	
	queue<int> q;
	q.push(1);
	st[1] = 1;
	
	while(q.size()){
		int t=q.front();
		q.pop();
		
		st[t]=0;
		
		for(int i=h[t];i!=-1;i=ne[i]){
			int j=e[i];
			if(dist[j]>dist[t]+w[i]){
				dist[j]=dist[t]+w[i];
				if(!st[j]){
					q.push(j);
					st[j]=1;
				}
			}
		}
	}
	if(dist[n]==0x3f3f3f3f) return -1;
	return dist[n];
}

int main(){
	cin>>n>>m;
	
	memset(h,-1,sizeof h);
	
	while(m--){
		int a,b,c;
		cin>>a>>b>>c;
		add(a,b,c);
	}
	int t=spfa();
	if(t==-1) puts("impossible");
	else cout<<t;
	
	return 0;
}
/*
3 3
1 2 5
2 3 -3
1 3 4


2
*/

题目:判断负环

1h 52min

Floyd

邻接矩阵d[i, j]

for k in len(n):

​ for i in len(n):

​ for j in len(n):

​ d[i, j] = min(d[i, j], d[i, k] + d[k, j])

不能处理负权回路

本质:动态规划

题目:求最短路

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
# include <queue>
using namespace std;

const int N = 210, INF = 1e9;
int n, m, Q;
int d[N][N];

void floyd(){
	for(int k=1;k<=n;k++){
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
				d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
			}
		}
	}
}

int main(){
	cin>>n>>m>>Q;
	
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			if(i==j) d[i][j]=0;
			else d[i][j]=INF;
		}
	}
	
	while(m--){
		int a,b,w;
		cin>>a>>b>>w;
		
		d[a][b]=min(d[a][b],w);
	}
	
	floyd();
	
	while(Q--){
		int a,b;
		cin>>a>>b;
		
		if(d[a][b]>INF/2) puts("impossible");
		else cout<<d[a][b];
	}
	
	return 0;
}
/*
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

impossible
1
*/

8:最小生成树

Prim

朴素版prim,O(n^2)——稠密图

dist[i] <- 正无穷

for n times:

​ t <- 找到集合外距离最近的点

​ 用t更新其他点到集合的距离

​ st[t] = 1

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
# include <queue>
using namespace std;

const int N = 510, INF = 0x3f3f3f3f;
int n, m;
int g[N][N];
int dist[N];
bool st[N];

int prim(){
	memset(dist,0x3f,sizeof dist);
	
	int res=0;
	for(int i=0;i<n;i++){
		int t=-1;
		//t 记录集合外最近的点 
		for(int j=1;j<=n;j++){
			// 如果j没访问过,且,t未更新或j的距离更小 
			if(!st[j]&&(t==-1||dist[t]>dist[j])){
				t=j;
				//更新 
			}
		}
		if(i && dist[t]==INF) return INF;
		//如果是第一次找集合,且有不连通的块,则一定不能构成生成树
		if(i) res+=dist[t];
		//如果是第一次找集合,则更新res
		
		for(int j=1;j<=n;j++){
			dist[j]=min(dist[j],g[t][j]);
			//更新其他点到集合的距离 
		} 
		st[t] = 1;
		// t被访问,更新 
	}
	return res;
}

int main(){
	cin>>n>>m;
	memset(g,0x3f,sizeof g);
	
	while(m--){
		int a,b,c;
		cin>>a>>b>>c;
		g[a][b]=g[b][a]=min(g[a][b],c);
	}
	
	int t=prim();
	
	if(t==INF) puts("impossible");
	else cout<<t;
	
	return 0;
}
/*
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4


6
*/

堆优化版prim,O(mlogn)——稀疏图

用优先队列优化集合数组,和dijkstra的优化类似

Kruskal

O(mlogm)——稀疏图

将所有边按照权重,升序排序,O(mlogm)

枚举每条边a——b,权重是c

​ if a、b不连通,则将这条边加入集合

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
# include <queue>
using namespace std;

const int N = 2e5+10;
int n, m;
int p[N];
//并查集的parent

struct Edge{
	int a,b,w;
	bool operator< (const Edge &W) const{
		return w<W.w;
	}
}edges[N]; 

int find(int x){
	// 如果x不是祖宗结点,则继续查找 
	if(x != p[x]) 
		p[x]=find(p[x]);
	return p[x];
}
int main(){
	cin>>n>>m;
	
	for(int i=0;i<m;i++){
		int a,b,w;
		cin>>a>>b>>w;
		edges[i]={a,b,w};
	}
	
	sort(edges,edges+m);
	//升序排序
	
	for(int i=1;i<=n;i++){
		p[i]=i;
		// 初始化p数组 
	} 
	
	int res=0,cnt=0;
	//cnt记录已经加入的边数,res记录已加入的总权重 
	for(int i=0;i<m;i++){
		int a=edges[i].a;
		int b=edges[i].b;
		int w=edges[i].w;
		
		a=find(a);
		b=find(b);
		
		if(a!=b){
			p[a]=b;
			res+=w;
			cnt++;
		}
	}
	
	if(cnt<n-1) puts("impossible");
	else cout<<res; //输出权重之和 
	
	return 0;
}
/*
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

6
*/

9:二分图

染色法

O(m+n)

染色法作用:判断一个图是否是二分图

一个图是二分图,当且仅当图中不含奇数环

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
# include <queue>
using namespace std;

const int N = 1e5+10, M = 2e5+10;
int n, m;
int h[N],e[M],ne[M],idx;
int color[N];

void add(int a,int b){
	e[idx]=b;
	ne[idx]=h[a];
	h[a]=idx++;
}

bool dfs(int u,int c){
	color[u]=c; //当前点的颜色,记录
	//遍历当前点的邻接点 
	for(int i=h[u];i!=-1;i=ne[i]){
		int j=e[i];
		//如果邻接点未染色 
		if(!color[j]){
			//如果把邻接点染成另外一个颜色不行,就返回0 
			if(!dfs(j,3-c)) return 0;
		}
		//如果邻接点有染色 
		else{
			//如果邻接点的颜色和当前点是一样的,就返回0 
			if(color[j]==c) return 0; 
		}
	}
	return 1;
}

int main(){
	cin>>n>>m;
	memset(h,-1,sizeof h);
	
	while(m--){
		int a,b;
		cin>>a>>b;
		add(a,b);
		add(b,a);
	}
	
	bool flag=1;	//是否有矛盾 
	for(int i=1;i<=n;i++){
		//如果没有被染过
		if(!color[i]){
			// dfs中有矛盾 
			if(!dfs(i,1)){
				flag=0;
				break;
			}
		} 
	}
	
	if(flag) puts("Yes");
	else puts("No"); 
	
	return 0;
}
/*
4 4
1 3
1 4
2 3
2 4


Yes
*/

匈牙利算法

最坏O(mn),n个左侧堆的点需要查找n次,每次需要匹配m个右侧堆的点

实际运行时间远小于最坏情况

二部图中,没有2条边使用了同一个点进行匹配

作用:找到最多的边,满足左侧堆和右侧堆的匹配关系

典例:恋爱关系

题目:二分图的最大匹配

# include <iostream>
# include <string.h>
# include <algorithm> 
# include <stdio.h> 
# include <vector>
# include <queue>
using namespace std;

const int N = 510, M = 1e5+10;
int n1, n2, m;
int h[N],e[M],ne[M],idx;
int match[N];
bool st[N];

//加边
void add(int a,int b){
	e[idx]=b;
	ne[idx]=h[a];
	h[a]=idx++;
}

bool find(int x){
	for(int i=h[x];i!=-1;i=ne[i]){
		int j=e[i];	//还原右侧点
		
		//如果右侧点没访问过 
		if(!st[j]){
			st[j]=1;	//设置访问状态
			
			//如果右侧点没有匹配过,或匹配过的左侧点可以换一个右侧点匹配 
			if(match[j]==0 || find(match[j])){
				match[j]=x;	//记录右侧点匹配的左侧点 
				return 1;	//成功匹配 
			}
		} 
	}
	return 0;
}

int main(){
	cin>>n1>>n2>>m;
	memset(h,-1,sizeof h);
	
	while(m--){
		int a,b;
		cin>>a>>b;
		add(a,b);
	}
	
	int res=0;
	for(int i=1;i<=n1;i++){
		memset(st,0,sizeof st);
		if(find(i)) res++;
	}
	cout<<res;
	 
	return 0;
}
/*
2 2 4
1 1
1 2
2 1
2 2


2
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MorleyOlsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值