灾后重建
题目背景
B 地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。
题目描述
给出 B 地区的村庄数
N
N
N,村庄编号从
0
0
0 到
N
−
1
N-1
N−1,和所有
M
M
M 条公路的长度,公路是双向的。并给出第
i
i
i 个村庄重建完成的时间
t
i
t_i
ti,你可以认为是同时开始重建并在第
t
i
t_i
ti 天重建完成,并且在当天即可通车。若
t
i
t_i
ti 为
0
0
0 则说明地震未对此地区造成损坏,一开始就可以通车。之后有
Q
Q
Q 个询问
(
x
,
y
,
t
)
(x,y,t)
(x,y,t),对于每个询问你要回答在第
t
t
t 天,从村庄
x
x
x 到村庄
y
y
y 的最短路径长度为多少。如果无法找到从
x
x
x 村庄到
y
y
y 村庄的路径,经过若干个已重建完成的村庄,或者村庄
x
x
x 或村庄
y
y
y 在第
t
t
t 天仍未重建完成,则需要返回 -1
。
输入格式
第一行包含两个正整数 N , M N,M N,M,表示了村庄的数目与公路的数量。
第二行包含 N N N个非负整数 t 0 , t 1 , … , t N − 1 t_0, t_1,…, t_{N-1} t0,t1,…,tN−1,表示了每个村庄重建完成的时间,数据保证了 t 0 ≤ t 1 ≤ … ≤ t N − 1 t_0 ≤ t_1 ≤ … ≤ t_{N-1} t0≤t1≤…≤tN−1。
接下来 M M M行,每行 3 3 3个非负整数 i , j , w i, j, w i,j,w, w w w为不超过 10000 10000 10000的正整数,表示了有一条连接村庄 i i i与村庄 j j j的道路,长度为 w w w,保证 i ≠ j i≠j i=j,且对于任意一对村庄只会存在一条道路。
接下来一行也就是 M + 3 M+3 M+3行包含一个正整数 Q Q Q,表示 Q Q Q个询问。
接下来 Q Q Q行,每行 3 3 3个非负整数 x , y , t x, y, t x,y,t,询问在第 t t t天,从村庄 x x x到村庄 y y y的最短路径长度为多少,数据保证了 t t t是不下降的。
输出格式
共 Q Q Q行,对每一个询问 ( x , y , t ) (x, y, t) (x,y,t)输出对应的答案,即在第 t t t天,从村庄 x x x到村庄 y y y的最短路径长度为多少。如果在第t天无法找到从 x x x村庄到 y y y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄 y y y在第 t t t天仍未修复完成,则输出 − 1 -1 −1。
样例 #1
样例输入 #1
4 5
1 2 3 4
0 2 1
2 3 1
3 1 2
2 1 4
0 3 5
4
2 0 2
0 1 2
0 1 3
0 1 4
样例输出 #1
-1
-1
5
4
提示
对于 30 % 30\% 30%的数据,有 N ≤ 50 N≤50 N≤50;
对于 30 % 30\% 30%的数据,有 t i = 0 t_i= 0 ti=0,其中有 20 % 20\% 20%的数据有 t i = 0 t_i = 0 ti=0且 N > 50 N>50 N>50;
对于 50 % 50\% 50%的数据,有 Q ≤ 100 Q≤100 Q≤100;
对于 100 % 100\% 100%的数据,有 N ≤ 200 N≤200 N≤200, M ≤ N × ( N − 1 ) / 2 M≤N \times (N-1)/2 M≤N×(N−1)/2, Q ≤ 50000 Q≤50000 Q≤50000,所有输入数据涉及整数均不超过 100000 100000 100000。
F l o y d Floyd Floyd算法 O ( n 3 + Q ) O(n^3+Q) O(n3+Q)
本题让我对
F
l
o
y
d
Floyd
Floyd算法的理解有了质的飞跃,曾经虽然也明白
k
k
k是中间点,用来更新其他点之间的距离。但是,通过这道题,能够更加清晰的体会
F
l
o
y
d
Floyd
Floyd算法是如何通过
k
k
k一步一步将每个点作为中间点去更新其他点之间的距离的。
例如,当
k
=
1
k=1
k=1时,只用编号为
1
1
1这个点更新其他点之间的距离…所以我们可以利用
F
l
o
y
d
Floyd
Floyd这个特征,对题目中的每一次询问依次处理(题目数据保证了
t
t
t是不下降的,并且每个村的重建时间也是按照编号依次递增)。例如2 0 2
这组询问,我们就需要用到重建时间小于等于2
的所有点去更新距离矩阵,并且只有这样才能保证最优。
时间复杂度
总所周知,
F
l
o
y
d
Floyd
Floyd算法时间复杂度
O
(
n
3
)
O(n^3)
O(n3),本题除此以外还需要处理
Q
Q
Q个询问,故时间复杂度为
O
(
n
3
+
Q
)
O(n^3+Q)
O(n3+Q)。
参考文献
Gump Yan 大佬博客
废话不多说,看代码
J a v a Java Java 代码
import java.io.*;
public class Main {
static final int N = 210, INF = 0x3f3f3f3f;
static int[][] g = new int[N][N]; //存储任意两点间的距离
static int[] time = new int[N]; //存储修复村庄所需的时间
static int n, m;
public static void floyd(int k) { //floyd算法模板
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++)
g[i][j] = Math.min(g[i][j], g[i][k] + g[k][j]);
}
public static void main(String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
String[] s1 = br.readLine().split(" ");
//读入n,m
n = Integer.parseInt(s1[0]);
m = Integer.parseInt(s1[1]);
//读入每个村庄的重建时间
String[] s2 = br.readLine().split(" ");
for (int i = 0; i < n; i ++)
time[i] = Integer.parseInt(s2[i]);
//初始化距离矩阵
for (int i = 0; i < n; i ++) g[i][i] = 0;
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++)
g[i][j] = INF;
//处理询问
while (m -- > 0) {
String[] s3 = br.readLine().split(" ");
int a = Integer.parseInt(s3[0]);
int b = Integer.parseInt(s3[1]);
int c = Integer.parseInt(s3[2]);
g[a][b] = g[b][a] = Math.min(g[a][b], c); //防止题目给重边
}
int q = Integer.parseInt(br.readLine().split(" ")[0]); //防止单个数后面加个空格(防止心机出题人)
int now = 0; //用于记录当前有多少个村庄参与了更新距离矩阵
while (q -- > 0) {
String[] s4 = br.readLine().split(" ");
int a = Integer.parseInt(s4[0]);
int b = Integer.parseInt(s4[1]);
int t = Integer.parseInt(s4[2]);
while (time[now] <= t && now < n) floyd(now ++);
if (time[a] > t || time[b] > t || g[a][b] == INF) bw.write(-1 + "\n");
else bw.write(g[a][b] + "\n");
}
bw.flush();
}
}
看完了点个赞呗