灾后重建题解(Java)

文章提供了一个关于灾后村庄重建的最短路径问题,使用Floyd算法来求解。在地震导致部分村庄损毁的情况下,只有完全重建的村庄之间的公路才能通行。题目描述了村庄的重建时间以及公路信息,并给出了多个查询,要求在特定时间的最短路径长度。通过Floyd算法逐步更新距离矩阵,结合村庄的重建状态处理查询,时间复杂度为O(n^3+Q)。文章提供了Java代码示例来展示解决方案。
摘要由CSDN通过智能技术生成

灾后重建

题目背景

B 地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。

题目描述

给出 B 地区的村庄数 N N N,村庄编号从 0 0 0 N − 1 N-1 N1,和所有 M M M 条公路的长度,公路是双向的。并给出第 i i i 个村庄重建完成的时间 t i t_i ti,你可以认为是同时开始重建并在第 t i t_i ti 天重建完成,并且在当天即可通车。若 t i t_i ti 0 0 0 则说明地震未对此地区造成损坏,一开始就可以通车。之后有 Q Q Q 个询问 ( x , y , t ) (x,y,t) (x,y,t),对于每个询问你要回答在第 t t t 天,从村庄 x x x 到村庄 y y y 的最短路径长度为多少。如果无法找到从 x x x 村庄到 y y y 村庄的路径,经过若干个已重建完成的村庄,或者村庄 x x x 或村庄 y y y 在第 t t t 天仍未重建完成,则需要返回 -1

输入格式

第一行包含两个正整数 N , M N,M N,M,表示了村庄的数目与公路的数量。

第二行包含 N N N个非负整数 t 0 , t 1 , … , t N − 1 t_0, t_1,…, t_{N-1} t0,t1,,tN1,表示了每个村庄重建完成的时间,数据保证了 t 0 ≤ t 1 ≤ … ≤ t N − 1 t_0 ≤ t_1 ≤ … ≤ t_{N-1} t0t1tN1

接下来 M M M行,每行 3 3 3个非负整数 i , j , w i, j, w i,j,w w w w为不超过 10000 10000 10000的正整数,表示了有一条连接村庄 i i i与村庄 j j j的道路,长度为 w w w,保证 i ≠ j i≠j i=j,且对于任意一对村庄只会存在一条道路。

接下来一行也就是 M + 3 M+3 M+3行包含一个正整数 Q Q Q,表示 Q Q Q个询问。

接下来 Q Q Q行,每行 3 3 3个非负整数 x , y , t x, y, t x,y,t,询问在第 t t t天,从村庄 x x x到村庄 y y y的最短路径长度为多少,数据保证了 t t t是不下降的。

输出格式

Q Q Q行,对每一个询问 ( x , y , t ) (x, y, t) (x,y,t)输出对应的答案,即在第 t t t天,从村庄 x x x到村庄 y y y的最短路径长度为多少。如果在第t天无法找到从 x x x村庄到 y y y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄 y y y在第 t t t天仍未修复完成,则输出 − 1 -1 1

样例 #1

样例输入 #1

4 5
1 2 3 4
0 2 1
2 3 1
3 1 2
2 1 4
0 3 5
4
2 0 2
0 1 2
0 1 3
0 1 4

样例输出 #1

-1
-1
5
4

提示

对于 30 % 30\% 30%的数据,有 N ≤ 50 N≤50 N50

对于 30 % 30\% 30%的数据,有 t i = 0 t_i= 0 ti=0,其中有 20 % 20\% 20%的数据有 t i = 0 t_i = 0 ti=0 N > 50 N>50 N>50

对于 50 % 50\% 50%的数据,有 Q ≤ 100 Q≤100 Q100

对于 100 % 100\% 100%的数据,有 N ≤ 200 N≤200 N200 M ≤ N × ( N − 1 ) / 2 M≤N \times (N-1)/2 MN×(N1)/2 Q ≤ 50000 Q≤50000 Q50000,所有输入数据涉及整数均不超过 100000 100000 100000


F l o y d Floyd Floyd算法 O ( n 3 + Q ) O(n^3+Q) O(n3+Q)

本题让我对 F l o y d Floyd Floyd算法的理解有了质的飞跃,曾经虽然也明白 k k k是中间点,用来更新其他点之间的距离。但是,通过这道题,能够更加清晰的体会 F l o y d Floyd Floyd算法是如何通过 k k k一步一步将每个点作为中间点去更新其他点之间的距离的。
例如,当 k = 1 k=1 k=1时,只用编号为 1 1 1这个点更新其他点之间的距离…所以我们可以利用 F l o y d Floyd Floyd这个特征,对题目中的每一次询问依次处理(题目数据保证了 t t t是不下降的,并且每个村的重建时间也是按照编号依次递增)。例如2 0 2这组询问,我们就需要用到重建时间小于等于2的所有点去更新距离矩阵,并且只有这样才能保证最优。

时间复杂度

总所周知 F l o y d Floyd Floyd算法时间复杂度 O ( n 3 ) O(n^3) O(n3),本题除此以外还需要处理 Q Q Q个询问,故时间复杂度为 O ( n 3 + Q ) O(n^3+Q) O(n3+Q)

参考文献

Gump Yan 大佬博客
废话不多说,看代码

J a v a Java Java 代码

import java.io.*;

public class Main {
	static final int N = 210, INF = 0x3f3f3f3f;
	static int[][] g = new int[N][N]; //存储任意两点间的距离
	static int[] time = new int[N]; //存储修复村庄所需的时间
	static int n, m;
	public static void floyd(int k) { //floyd算法模板
		for (int i = 0; i < n; i ++)
			for (int j = 0; j < n; j ++)
				g[i][j] = Math.min(g[i][j], g[i][k] + g[k][j]);
	}
	public static void main(String[] args) throws IOException{
		BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
		BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
		String[] s1 = br.readLine().split(" ");
		//读入n,m
		n = Integer.parseInt(s1[0]);
		m = Integer.parseInt(s1[1]);
		//读入每个村庄的重建时间
		String[] s2 = br.readLine().split(" ");
		for (int i = 0; i < n; i ++) 
			time[i] = Integer.parseInt(s2[i]);
		//初始化距离矩阵
		for (int i = 0; i < n; i ++) g[i][i] = 0;
		for (int i = 0; i < n; i ++)
			for (int j = 0; j < n; j ++)
				g[i][j] = INF;
		//处理询问
		while (m -- > 0) {
			String[] s3 = br.readLine().split(" ");
			int a = Integer.parseInt(s3[0]);
			int b = Integer.parseInt(s3[1]);
			int c = Integer.parseInt(s3[2]);
			g[a][b] = g[b][a] = Math.min(g[a][b], c); //防止题目给重边
		}
		int q = Integer.parseInt(br.readLine().split(" ")[0]); //防止单个数后面加个空格(防止心机出题人)
		int now = 0; //用于记录当前有多少个村庄参与了更新距离矩阵
		while (q -- > 0) {
			String[] s4 = br.readLine().split(" ");
			int a = Integer.parseInt(s4[0]);
			int b = Integer.parseInt(s4[1]);
			int t = Integer.parseInt(s4[2]);
			while (time[now] <= t && now < n) floyd(now ++);
			if (time[a] > t || time[b] > t || g[a][b] == INF) bw.write(-1 + "\n");
			else bw.write(g[a][b] + "\n");
		}
		bw.flush();
	}
}

看完了点个赞呗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辞寒oo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值