一、安装系统依赖
sudo apt update
sudo apt install -y \
build-essential cmake git unzip pkg-config \
libjpeg-dev libpng-dev libtiff-dev \
libavcodec-dev libavformat-dev libswscale-dev \
libv4l-dev libxvidcore-dev libx264-dev \
libgtk-3-dev libatlas-base-dev gfortran python3-pip
二、安装 Python 3.6
使用系统原生支持(推荐)
sudo apt install -y python3.6 python3.6-dev python3.6-venv
三、创建虚拟环境(强烈推荐)
python3.6 -m venv rknn_env
source rknn_env/bin/activate
四、安装 pip 并指定版本
python -m pip install --upgrade pip
pip install setuptools==49.6.0
五、安装 TensorFlow 1.15
pip install tensorflow==1.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
六、下载toolkit2,通过 u 盘传到 ubuntu 主目录
https://github.com/airockchip/rknn-toolkit2/releases/tag/v1.4.0
主目录解压
unzip rknn-toolkit2-1.4.0.zip
激活虚拟环境
source ~/rknn_env/bin/activate
安装依赖库
RKNN Toolkit2 依赖一些 Python 库,我们先安装它们:
pip install numpy matplotlib opencv-python==4.5.1.48 protobuf==3.19.6 -i https://pypi.tuna.tsinghua.edu.cn/simple
安装 rknn-toolkit2-1.4.0
进入
激活虚拟环境
source ~/rknn_env/bin/activate
下载
pip install rknn_toolkit2-1.4.0_22dcfef4-cp36-cp36m-linux_x86_64.whl --no-deps
安装依赖
pip install onnx==1.9.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scipy==1.5.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install requests==2.27.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install bfloat16==1.1 flatbuffers==1.12 onnxruntime==1.10.0 \
psutil==5.9.0 requests==2.27.1 ruamel.yaml==0.17.4 \
torch==1.10.1 torchvision==0.11.2 tqdm==4.64.0 \
-i https://pypi.tuna.tsinghua.edu.cn/simple