ubuntu22.04 创建 Python 3.8 虚拟环境并安装RKNN Toolkit2-1.5.2 rk3588 上 安装rknn_toolkit_lite2-1.5.2

# 安装 Python 3.8 和虚拟环境模块(若未安装)
sudo apt update
sudo apt install -y python3.8 python3.8-venv

# 创建名为 rknn_env 的虚拟环境
python3.8 -m venv ~/rknn_env

# 激活虚拟环境
source ~/rknn_env/bin/activate

# 确认 Python 版本和 pip 版本
python --version
pip --version

在 github 下载Release v1.5.2 · airockchip/rknn-toolkit2 · GitHub安装包

找到cp38-cp38-linux_x86_64.whl 的文件

在虚拟环境中

cd ~/rknn-toolkit2-1.5.2/packages/
pip install ./rknn_toolkit2-1.5.2+b642f30c-cp38-cp38-linux_x86_64.whl

模型导出和转换

新建文件夹 mobilenetv3_convert

放入到这个文件夹

新建脚本导出 ONNX

nano export_onnx.py

脚本内容

import torch
from model import MobileNetV3_large

model = MobileNetV3_large(num_classes=2)
model.load_state_dict(torch.load('original_best.pkl', map_location='cpu'))
model.eval()

dummy_input = torch.randn(1, 3, 224, 224)
torch.onnx.export(model, dummy_input, 'facial_emotion.onnx',
                  input_names=['input'], output_names=['output'],
                  opset_version=11)

print("✅ ONNX 模型导出成功")

运行脚本

python3 export_onnx.py

新建脚本转化为 RKNN

nano convert_rknn.py

脚本内容

from rknn.api import RKNN

rknn = RKNN()
rknn.config(target_platform='rk3588')

rknn.load_onnx(model='facial_emotion.onnx')
rknn.build(do_quantization=False)
rknn.export_rknn('facial_emotion.rknn')
rknn.release()

print("✅ RKNN 模型导出成功")

运行脚本

python3 convert_rknn.py

将文件夹mobilenetv3_convert 压缩后通过 u 盘传到 RK3588

rk3588 上

刚才 github 下载的安装包中,找到

激活虚拟环境

source ~/tf2_env/bin/activate

安装

pip install rknn_toolkit_lite2-1.5.2-cp310-cp310-linux_aarch64.whl

安装一个 npu 核心驱动动态链接库,打开链接,下载 librknnrt.so,将它拷贝到/usr/lib/中

rknpu2/runtime/RK3588/Linux/librknn_api/aarch64 at master · rockchip-linux/rknpu2 · GitHub

sudo cp librknnrt.so /usr/lib/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值