题目描述:
给定两个大小分别为 m
和 n
的正序(从小到大)数组 nums1
和 nums2
。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n))
。
示例 1:
输入:nums1 = [1,3], nums2 = [2] 输出:2.00000 解释:合并数组 = [1,2,3] ,中位数 2
示例 2:
输入:nums1 = [1,2], nums2 = [3,4] 输出:2.50000 解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
提示:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
解法:
先将两数组合并,然后利用sort排序算法,对数组进行从小到大的排序,根据总长度是奇数或者偶数来决定中位数的位置
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int k = nums1.length + nums2.length;
int[] arr = new int[k];
for (int i = 0; i < nums1.length; i++) {
arr[i] = nums1[i];
}
for (int j = 0; j < nums2.length; j++) {
arr[nums1.length + j] = nums2[j];
}
Arrays.sort(arr);
if (k % 2 == 0) {
return ((double) arr[k / 2 - 1] + (double) arr[k / 2]) / 2.0;
} else {
return (double) arr[k / 2];
}
}
}