5.2 卡特兰数列

  1751年,知名数学家欧拉提出一个猜想。他的猜想是对于n+2条边组成的凸多边形,将其划分为n个三角形,划分方案有多少种。这个划分种数后来被证实是卡特兰数。如下图所示,三角形,只有一种,正方形两种,五边形五种,六边形14种,七边形42种。
在这里插入图片描述
  欧拉只是猜想,生前没证明出来,否则就叫欧拉数列,不叫卡特兰数列了。对于这个多边形问题,我简述下思路,拿到一个多边形,我们任意选一条边,这条边肯定位于一个三角形中。然后呢,我们区分左右。我用几张图来说明一下左右这个概念,在图中我们选定的边所处的三角形我填充了绿色,左边我填充了红色,右我填充了蓝色:
在这里插入图片描述  因为n+2条边,只能划分为n个三角形,那么这条边占了一个三角形,所以还剩下n-1个三角形。那这n-1个三角形再划分左右,按左边的数量递增,左边0个,右边n-1到左边n-1个,右边0个。而左右两块的划分数量还是卡特兰数。
  所以这是一个递归的序列,类似于斐波那契数列。其递归公式如下:
C n = ∑ k = 0 n − 1 C k C n − 1 − k 递 归 终 点 C 0 = 1 C_n=\sum_{k=0}^{n-1}C_kC_{n-1-k}\\ 递归终点C_0=1 Cn=k=0n1CkCn1kC0=1
  哎呀,骄傲一下,欧拉没证明出来的,被我证明出来了,我是不是可以比肩欧拉了呢🤭?此外,这类划分左右的问题,都可以用卡特兰数解决。比如我的另一篇博文一维数组讲了同一个问题,哈哈,算是反复炒冷饭了。
  卡特兰数最早由中国清朝蒙古族数学家明安图发明。明安图发明了以下公式,卡特兰数就在公式中:
s i n ( 2 α ) = 2 s i n α − ∑ n = 1 ∞ C n − 1 4 n − 1 s i n 2 n + 1 α sin(2\alpha)=2sin\alpha-\sum_{n=1}^{\infty}\frac{C_{n-1}}{4^{n-1}}sin^{2n+1}\alpha sin(2α)=2sinαn=14n1Cn1sin2n+1α
  这个公式,我是不明白为什么相等的,也不会证明,有兴趣的可以去证明一下,或者去学习证明过程。明安图公式这个东西,是双重求和。求和里还包含了求和,因为 C n − 1 C_{n-1} Cn1就是卡特兰数。因为明安图最早发现的,所以卡特兰数也叫做明安图数。
  卡特兰数在OEIS的编号是A000108。
  计算卡特兰数的代码非常简单了

# _*_ coding:utf-8 _*_
# 以1开始
def catalan(n):
    if n < 3:
        return 1
    array = [0] * n
    array[1] = array[0] = 1
    for i in range(2, n):
        for j in range(0, i):
            array[i] += array[j] * array[i - j - 1]
    return array[n-1]

  Python控制台输出结果如下

catalan(1)
1
catalan(2)
1
catalan(3)
2
catalan(4)
5
catalan(5)
14
catalan(6)
42
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值