历史
1852年,伦敦大学学院(University College London,名字很奇怪,但确实是世界名校)的学生Francis Guthrie在画英格兰地图时,发现只需要四种颜色就可以使得两个相邻的郡没有相同的颜色。由此,四色定理诞生。但是这还只是一个猜想,这个猜想的前提是在球面上的,也就是拓扑学里亏格genus为0的闭合曲面。而且四色猜想不允许有飞地的存在,下图就是一个飞地(图片来自华盛顿大学圣路易斯分校):
四色猜想还有要求就是不能有水体,什么河流、湖泊、海洋。因为有了这些水体地图就异常复杂了,数学建模就异常困难。
1879年,Alfred Kempe发表了对四色定理的证明。这个证明有一处错误,但是当时没人发现这处错误。
1890年,Percy Heawood发现了一处Alfred Kempe对四色定理证明的的错误。此外,Percy Heawood把四色定理的研究拓展到拓扑曲面上,也就是亏格为任意数的曲面。所谓亏格,我用通俗的话解释下,就是曲面洞的个数。下图是亏格为1、2、3的曲面(图片来源于网络):
Percy Heawood给出一个绘图需要的最少颜色的公式,用
χ
\chi
χ代表需要的颜色,g代表亏格,但条件是
g
≥
1
g\ge1
g≥1:
χ
(
g
)
≤
1
2
(
7
+
48
g
+
1
)
\chi(g)\le\frac{1}{2}(7+\sqrt{48g+1})
χ(g)≤21(7+48g+1)
当亏格为1时,
χ
(
g
)
≤
1
2
(
7
+
48
+
1
)
=
7
\chi(g)\le\frac{1}{2}(7+\sqrt{48+1})=7
χ(g)≤21(7+48+1)=7,也就是环面需要7种颜色才能绘图。但是呢,亏格为0,也就是球面,还是不能用这个公式。
1976年,Haken和Appel用超过1200小时的计算机运算,枚举了所有场景,证明了四色定理,但是这个证明方式,人类难以理解。但是后来有耐心的数学家发现了Haken和Appel算法中的错误。
1996年,Robertson发表了一个更短的对四色定理的证明,但是得不到数学家的认可。
对四色问题的证明还在继续。总结下,其实是两类证明方法,图论的方法只能证明五色定理,拓扑学的方法只能证明亏格大于等于1的情况。但是四色问题就是要亏格为0的情况下用四色去染色,哈哈。
图论研究方法
地图是很复杂的,图论里的图是对地图的高度抽象。抽象的方法有两种,一种是点着色法,一种是面着色法,下图是点着色法,把地图的每个区域抽象为一个点(图片来自伊利诺伊大学):
这种是面face着色法,把地图的区域交界点作为图的点,边界直线化(图片来自伊利诺伊大学):
图论的研究方法总有论文出来,然后论文总被推翻,哈哈。
拓扑学研究方法
除了抽象为图论中图的方法,还有拓扑学方法。Percy Heawood的研究方法就是一种拓扑学方法。这种方法叫切割法,就拿亏格为1的环面torus来说,割一刀变成了圆柱体cylinder(图片来源于网络):。
圆柱体再割一刀,变成了矩形rectangle
但是球面怎么割呢?怎么研究呢?Percy Heawood没有办法,研究不下去,只能期待下一代拓扑学天才出现喽。