8.8 四色定理

四色定理始于1852年,源于Francis Guthrie的一个观察,即英格兰地图可以用四种颜色着色,使得相邻区域不同色。经过多位数学家的尝试和错误证明,如Alfred Kempe和Percy Heawood的工作,最终在1976年由Haken和Appel借助计算机证明,但证明过程复杂难懂。至今,四色定理的证明仍在数学界引起关注。图论和拓扑学方法是研究这一问题的主要途径,其中图论通过点着色和面着色法抽象地图,而拓扑学则利用切割法探讨不同亏格曲面的染色问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

历史

  1852年,伦敦大学学院(University College London,名字很奇怪,但确实是世界名校)的学生Francis Guthrie在画英格兰地图时,发现只需要四种颜色就可以使得两个相邻的郡没有相同的颜色。由此,四色定理诞生。但是这还只是一个猜想,这个猜想的前提是在球面上的,也就是拓扑学里亏格genus为0的闭合曲面。而且四色猜想不允许有飞地的存在,下图就是一个飞地(图片来自华盛顿大学圣路易斯分校):
在这里插入图片描述
  四色猜想还有要求就是不能有水体,什么河流、湖泊、海洋。因为有了这些水体地图就异常复杂了,数学建模就异常困难。
  1879年,Alfred Kempe发表了对四色定理的证明。这个证明有一处错误,但是当时没人发现这处错误。
  1890年,Percy Heawood发现了一处Alfred Kempe对四色定理证明的的错误。此外,Percy Heawood把四色定理的研究拓展到拓扑曲面上,也就是亏格为任意数的曲面。所谓亏格,我用通俗的话解释下,就是曲面洞的个数。下图是亏格为1、2、3的曲面(图片来源于网络):
在这里插入图片描述
  Percy Heawood给出一个绘图需要的最少颜色的公式,用 χ \chi χ代表需要的颜色,g代表亏格,但条件是 g ≥ 1 g\ge1 g1
χ ( g ) ≤ 1 2 ( 7 + 48 g + 1 ) \chi(g)\le\frac{1}{2}(7+\sqrt{48g+1}) χ(g)21(7+48g+1 )
  当亏格为1时, χ ( g ) ≤ 1 2 ( 7 + 48 + 1 ) = 7 \chi(g)\le\frac{1}{2}(7+\sqrt{48+1})=7 χ(g)21(7+48+1 )=7,也就是环面需要7种颜色才能绘图。但是呢,亏格为0,也就是球面,还是不能用这个公式。
  1976年,Haken和Appel用超过1200小时的计算机运算,枚举了所有场景,证明了四色定理,但是这个证明方式,人类难以理解。但是后来有耐心的数学家发现了Haken和Appel算法中的错误。
  1996年,Robertson发表了一个更短的对四色定理的证明,但是得不到数学家的认可。
  对四色问题的证明还在继续。总结下,其实是两类证明方法,图论的方法只能证明五色定理,拓扑学的方法只能证明亏格大于等于1的情况。但是四色问题就是要亏格为0的情况下用四色去染色,哈哈。

图论研究方法

  地图是很复杂的,图论里的图是对地图的高度抽象。抽象的方法有两种,一种是点着色法,一种是面着色法,下图是点着色法,把地图的每个区域抽象为一个点(图片来自伊利诺伊大学):
在这里插入图片描述
  这种是面face着色法,把地图的区域交界点作为图的点,边界直线化(图片来自伊利诺伊大学):
在这里插入图片描述
  图论的研究方法总有论文出来,然后论文总被推翻,哈哈。

拓扑学研究方法

  除了抽象为图论中图的方法,还有拓扑学方法。Percy Heawood的研究方法就是一种拓扑学方法。这种方法叫切割法,就拿亏格为1的环面torus来说,割一刀变成了圆柱体cylinder(图片来源于网络):。
在这里插入图片描述

在这里插入图片描述
  圆柱体再割一刀,变成了矩形rectangle
在这里插入图片描述
  但是球面怎么割呢?怎么研究呢?Percy Heawood没有办法,研究不下去,只能期待下一代拓扑学天才出现喽。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值