指数式母函数

  在前文我说了母函数的定义。但是母函数绝不是为了根据通项公式求母函数,而是为了根据递推公式求通项公式。但是根据母函数法求通项公式也不是万能的。还记得拉姆齐定理里的公式吗?拉姆齐定义的递推公式是:
a n = n a n − 1 − n + 2 , a 1 = 3 a_n=na_{n-1}-n+2,a_1=3 an=nan1n+2a1=3
  母函数法只能求两种递推公式的通项公式,线性递推公式和多项式递推公式,而线性递推公式是多项式递推公式最高项次数为1的特殊情况。而拉姆齐公式既不是线性,也不是多项式的。
  但是用一般的母函数也难以求线性递推的通项公式,因为麦克劳林级数里的阶乘非常难消去,所以就有了指数母函数。指数母函数的定义是,如果一个函数的麦克劳林级数展开式中, x n n ! \frac{x^n}{n!} n!xn前面的系数如果和数列的第 n n n项相等,那么这个函数就是这个数列的指数母函数。比如:
e 2 x = 1 + 2 x + 2 2 x 2 2 ! + 2 3 x 3 3 ! + ⋯ + 2 n x n n ! e^{2x}=1+2x+\frac{2^2x^2}{2!}+\frac{2^3x^3}{3!}+\cdots+\frac{2^nx^n}{n!} e2x=1+2x+2!22x2+3!23x3++n!2nxn
  那么 e x e^x ex就是数列 a n = 2 n a_n=2^n an=2n的指数母函数。如果是普通母函数,那么 e x e^x ex a n = 2 n n ! a_n=\frac{2^n}{n!} an=n!2n的母函数。指数式母函数为等比数列提供了一个桥梁。

线性递推

  比如说以下递推公式:
a n = 2 a n − 1 + 3 a n − 2 + 4 , a 1 = 1 , a 2 = 2 a_n=2a_{n-1}+3a_{n-2}+4,a_1=1,a_2=2 an=2an1+3an2+4,a1=1,a2=2
  首先假设函数的母函数是 f ( x ) f(x) f(x).那么这个函数展开就是:
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ( 2 ) ( 0 ) x 2 2 + f ( 3 ) ( 0 ) x 3 3 ! + ⋯ + f ( n ) ( 0 ) x n n ! f(x)=f(0)+{f'(0)x}+\frac{f^{(2)}(0)x^2}{2}+\frac{f^{(3)}(0)x^3}{3!}+\cdots+\frac{f^{(n)}(0)x^n}{n!} f(x)=f(0)+f(0)x+2f(2)(0)x2+3!f(3)(0)x3++n!f(n)(0)xn
  也就是:
f ′ ( 0 ) = a 1 f ( 2 ) ( 0 ) 2 = a 2 f ( 3 ) ( 0 ) 3 ! = a 3 ⋮ f ( n ) ( 0 ) n ! = a n f'(0)=a_1\\ \frac{f^{(2)}(0)}{2}=a_2\\ \frac{f^{(3)}(0)}{3!}=a_3\\ \vdots\\ \frac{f^{(n)}(0)}{n!}=a_n\\

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值