指数式母函数

  在前文我说了母函数的定义。但是母函数绝不是为了根据通项公式求母函数,而是为了根据递推公式求通项公式。但是根据母函数法求通项公式也不是万能的。还记得拉姆齐定理里的公式吗?拉姆齐定义的递推公式是:
a n = n a n − 1 − n + 2 , a 1 = 3 a_n=na_{n-1}-n+2,a_1=3 an=nan1n+2a1=3
  母函数法只能求两种递推公式的通项公式,线性递推公式和多项式递推公式,而线性递推公式是多项式递推公式最高项次数为1的特殊情况。而拉姆齐公式既不是线性,也不是多项式的。
  但是用一般的母函数也难以求线性递推的通项公式,因为麦克劳林级数里的阶乘非常难消去,所以就有了指数母函数。指数母函数的定义是,如果一个函数的麦克劳林级数展开式中, x n n ! \frac{x^n}{n!} n!xn前面的系数如果和数列的第 n n n项相等,那么这个函数就是这个数列的指数母函数。比如:
e 2 x = 1 + 2 x + 2 2 x 2 2 ! + 2 3 x 3 3 ! + ⋯ + 2 n x n n ! e^{2x}=1+2x+\frac{2^2x^2}{2!}+\frac{2^3x^3}{3!}+\cdots+\frac{2^nx^n}{n!} e2x=1+2x+2!22x2+3!23x3++n!2nxn
  那么 e x e^x ex就是数列 a n = 2 n a_n=2^n an=2n的指数母函数。如果是普通母函数,那么 e x e^x ex a n = 2 n n ! a_n=\frac{2^n}{n!} an=n!2n的母函数。指数式母函数为等比数列提供了一个桥梁。

线性递推

  比如说以下递推公式:
a n = 2 a n − 1 + 3 a n − 2 + 4 , a 1 = 1 , a 2 = 2 a_n=2a_{n-1}+3a_{n-2}+4,a_1=1,a_2=2 an=2an1+3an2+4,a1=1,a2=2
  首先假设函数的母函数是 f ( x ) f(x) f(x).那么这个函数展开就是:
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ( 2 ) ( 0 ) x 2 2 + f ( 3 ) ( 0 ) x 3 3 ! + ⋯ + f ( n ) ( 0 ) x n n ! f(x)=f(0)+{f'(0)x}+\frac{f^{(2)}(0)x^2}{2}+\frac{f^{(3)}(0)x^3}{3!}+\cdots+\frac{f^{(n)}(0)x^n}{n!} f(x)=f(0)+f(0)x+2f(2)(0)x2+3!f(3)(0)x3++n!f(n)(0)xn
  也就是:
f ′ ( 0 ) = a 1 f ( 2 ) ( 0 ) 2 = a 2 f ( 3 ) ( 0 ) 3 ! = a 3 ⋮ f ( n ) ( 0 ) n ! = a n f'(0)=a_1\\ \frac{f^{(2)}(0)}{2}=a_2\\ \frac{f^{(3)}(0)}{3!}=a_3\\ \vdots\\ \frac{f^{(n)}(0)}{n!}=a_n\\ f(0)=a12f(2)(0)=a23!f(3)(0)=a3n!f(n)(0)=an
  先别急着求出来,把递推公式套进去,看看:
f ( n ) ( 0 ) n ! = 2 f ( n − 1 ) ( 0 ) ( n − 1 ) ! + 3 f ( n − 2 ) ( 0 ) ( n − 2 ) ! + 4    ⟹    f ( n ) ( 0 ) n ! = 2 n f ( n − 1 ) ( 0 ) n ! + 3 n ( n − 1 ) f ( n − 2 ) ( 0 ) n ! + 4 n ! n !    ⟹    f ( n ) ( 0 ) = 2 n f ( n − 1 ) ( 0 ) + 3 n ( n − 1 ) f ( n − 2 ) ( 0 ) + 4 n ! \frac{f^{(n)}(0)}{n!}=2\frac{f^{(n-1)}(0)}{(n-1)!}+3\frac{f^{(n-2)}(0)}{(n-2)!}+4\\ \implies \frac{f^{(n)}(0)}{n!}=\frac{2nf^{(n-1)}(0)}{n!}+\frac{3n(n-1)f^{(n-2)}(0)}{n!}+4\frac{n!}{n!}\\ \implies {f^{(n)}(0)}={2nf^{(n-1)}(0)}+{3n(n-1)f^{(n-2)}(0)}+4{n!} n!f(n)(0)=2(n1)!f(n1)(0)+3(n2)!f(n2)(0)+4n!f(n)(0)=n!2nf(n1)(0)+n!3n(n1)f(n2)(0)+4n!n!f(n)(0)=2nf(n1)(0)+3n(n1)f(n2)(0)+4n!
  这种形式的计算,因为分母有个阶乘,用普通的母函数是非常难求的。事实上,根据递推公式,我们知道数列的通项公式肯定是指数级的,假设指数的通项公式为 a n = c 1 b 1 n + c 2 b 2 n + c 3 a_n=c_1b_1^n+c_2b_2^n+c_3 an=c1b1n+c2b2n+c3,那么它的指数式母函数就是:
f ( x ) = c 1 e b 1 x + c 2 e b 2 x + c 3 e x f(x)=c_1e^{b_1x}+c_2e^{b_2x}+c_3e^x f(x)=c1eb1x+c2eb2x+c3ex
  这个函数的麦克劳林级数为:
f ( x ) = ∑ n = 0 ∞ [ ( c 1 b 1 n + c 2 b 2 n + c 3 ) x n n ! ] f(x)=\sum_{n=0}^{\infty}[(c_1b_1^n+c_2b_2^n+c_3)\frac{x^n}{n!}] f(x)=n=0[(c1b1n+c2b2n+c3)n!xn]
  恰好是 a n = c 1 b 1 n + c 2 b 2 n + c 3 a_n=c_1b_1^n+c_2b_2^n+c_3 an=c1b1n+c2b2n+c3的指数式母函数。那么现在未知数有点多,第一步是确定 b 1 , b 2 b_1,b_2 b1,b2的值。根据递推关系,我们有:
a n = c 1 b 1 n + c 2 b 2 n + c 3 a n − 1 = c 1 b 1 n − 1 + c 2 b 2 n − 1 + c 3 a n − 2 = c 1 b 1 n − 2 + c 2 b 2 n − 2 + c 3 a n = 2 a n − 1 + 3 a n − 2 + 4    ⟹    c 1 b 1 n + c 2 b 2 n + c 3 = 2 ( c 1 b 1 n − 1 + c 2 b 2 n − 1 + c 3 ) + 3 ( c 1 b 1 n − 2 + c 2 b 2 n − 2 + c 3 ) + 4 = 2 c 1 b 1 n − 1 + 2 c 2 b 2 n − 1 + 2 c 3 + 3 c 1 b 1 n − 2 + 3 c 2 b 2 n − 2 + 3 c 3 + 4 = 2 c 1 b 1 n − 1 + 3 c 1 b 1 n − 2 + 2 c 2 b 2 n − 1 + 3 c 2 b 2 n − 2 + 6 c 3 + 4 a_n=c_1b_1^n+c_2b_2^n+c_3\\ a_{n-1}=c_1b_1^{n-1}+c_2b_2^{n-1}+c_3\\ a_{n-2}=c_1b_1^{n-2}+c_2b_2^{n-2}+c_3\\ a_n=2a_{n-1}+3a_{n-2}+4\\ \implies \\ c_1b_1^n+c_2b_2^n+c_3\\= 2(c_1b_1^{n-1}+c_2b_2^{n-1}+c_3)+\\ 3(c_1b_1^{n-2}+c_2b_2^{n-2}+c_3)+4 \\=2c_1b_1^{n-1}+2c_2b_2^{n-1}+2c_3\\+3c_1b_1^{n-2}+3c_2b_2^{n-2}+3c_3+4\\ =2c_1b_1^{n-1}+3c_1b_1^{n-2}\\ +2c_2b_2^{n-1}+3c_2b_2^{n-2}\\ +6c_3+4\\ an=c1b1n+c2b2n+c3an1=c1b1n1+c2b2n1+c3an2=c1b1n2+c2b2n2+c3an=2an1+3an2+4c1b1n+c2b2n+c3=2(c1b1n1+c2b2n1+c3)+3(c1b1n2+c2b2n2+c3)+4=2c1b1n1+2c2b2n1+2c3+3c1b1n2+3c2b2n2+3c3+4=2c1b1n1+3c1b1n2+2c2b2n1+3c2b2n2+6c3+4
  各项系数都要相等,所以有:
c 1 b 1 n = 2 c 1 b 1 n − 1 + 3 c 1 b 1 n − 2 c 2 b 2 n = 2 c 2 b 2 n − 1 + 3 c 2 b 2 n − 2 c_1b_1^n=2c_1b_1^{n-1}+3c_1b_1^{n-2}\\ c_2b_2^n=2c_2b_2^{n-1}+3c_2b_2^{n-2}\\ c1b1n=2c1b1n1+3c1b1n2c2b2n=2c2b2n1+3c2b2n2
  其实可以转为方程:
b 2 = 2 b + 3    ⟹    b 2 − 2 b − 3 = ( b − 3 ) ( b + 1 ) = 0    ⟹    b 1 = 3 , b 2 = − 1 b^2=2b+3\\ \implies b^2-2b-3=(b-3)(b+1)=0\\ \implies b_1=3,b_2=-1 b2=2b+3b22b3=(b3)(b+1)=0b1=3,b2=1
  也就是指数的底数我们已经确定了,数列的通项公式为:
a n = c 1 3 n + c 2 ( − 1 ) n + c 3 a_n=c_13^n+c_2(-1)^n+c_3 an=c13n+c2(1)n+c3
  再算出数列的前三项: a 1 = 1 , a 2 = 2 , a 3 = 2 a 2 + 3 a 1 + 4 = 11 a_1=1,a_2=2,a_3=2a_2+3a_1+4=11 a1=1,a2=2,a3=2a2+3a1+4=11,得到方程:
3 c 1 − c 2 + c 3 = 1 9 c 1 + c 2 + c 3 = 2 27 c 1 − c 2 + c 3 = 11 3c_1-c_2+c_3=1\\ 9c_1+c_2+c_3=2\\ 27c_1-c_2+c_3=11\\ 3c1c2+c3=19c1+c2+c3=227c1c2+c3=11
  解得:
c 1 = 5 12 c 2 = − 3 4 c 3 = − 1 c_1=\frac{5}{12}\\ c_2=\frac{-3}{4}\\ c_3=-1 c1=125c2=43c3=1
  所以通项公式为:
a n = 5 12 3 n − 3 4 ( − 1 ) n − 1 a_n=\frac{5}{12}3^n-\frac{3}{4}(-1)^n-1 an=1253n43(1)n1
  多项式递推后面再说。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值