业务人员和数据分析师在完成表格和基础图表的制作后,经常需要用帆软finebi对数据分析图表做进一步的分析,尤其是OLAP分析。OLAP分析即多维分析,核心是“维”指模拟用户的多角度思考模式,从不同的维度、不同的粒度分析数据,包括钻取、切片/切块、旋转、切换维度等不同操作。通过OLAP分析,用户可以快速地从各个分析角度获取数据,也能动态地在久个角度之间切换或者进行多角度综合分析,具有极大的分析灵活性。从广义上讲,任何能够有助于辅助用户理解数据的技术或者操作都可以作为OLAP功能。
本项目通过集团商品销售数据分析任务介绍钻取、切片/切块、指标计算等一些常用的 OLAP分析功能,熟悉和掌握这些高级数据操作方法是进行高级可视化分析的基础。
图表钻取分析-任务描述
针对集团商品产品的销售数据(见表1).,完成对每个项目的销售额及该项目下各产品的销售额分析。
表4.1 集团商品销售数据
[知识准备]
在利用可视化图表分析业务问题时,往往会先从宏观层面把握业务总体情况,再通过逐渐向下钻取明细数据。定位到具体的问题,这种操作称为钻取。
钻取分析是数据分析中比较常用的分析方式。钻取可以改变维的层次、变换分析的颗粒度。例如对销售数据的分析,时间周期是一个维度,产品类别、分销渠道、地理分布、客户群类也分别是一个维度, 时间维度又可分为年、月、周、日等不同粒度,地理分布又可籍分为国家、省、市等不同粒度。
钻取分析包括向下钻取(Drill-lown)和向上钻取(Drilup)。Dillup是在某维度上将低层次的细节数据概括到高层次的汇总数据,或者减少维数:而drildlown则相反,它从汇总数据深入到细节数据,进行观察或增加新维度。
[任务实施]
FineBI