《python数学实验与建模》(2)高等数学与线性代数

🌌python 数学应用

  • 3.1 求下列积分的符号解

(1) ∫ 0 1 1 + 4 x   d x \int_{0}^{1}\sqrt{1+4x}~dx 011+4x  dx (2) ∫ 0 + ∞ e − x sin ⁡ x   d x \int_{0}^{+\infty}e^{-x}\sin x ~dx 0+exsinx dx

from sympy  import*#导入sympy的所有函数
x=symbols('x')#创建符号变量
res1=integrate(sqrt(1+4*x),(x,0,1))#积分1
res2=integrate(exp(-x)*sin(x),(x,0,oo))#积分2

结果:

  • − 1 6 + 5 5 6 -\frac{1}{6}+\frac{5\sqrt{5}}{6} 61+655

  • 1 2 \frac{1}{2} 21

  • 3.2 求方程 x 3 − 4 x 2 + 6 x − 8 = 0 x^3-4x^2+6x-8=0 x34x2+6x8=0 的符号解和数值解

from sympy  import*
from  scipy.optimize import fsolve
b=solve( x**3-4*x**2+6*x-8,x)#求符号解(求解出来是复数)
f=lambda x: x**3-4*x**2+6*x-8
a=fsolve(f,0)#符号解(默认是牛顿迭代法,以0为初值,二阶导函数连续)
print(a)
print(b.n())#打印数值解
  • 4 3 − 2 9 ( − 1 2 + 3 i 2 ) 64 27 + 2 114 9 3 + ( − 1 2 + 3 i 2 ) 64 27 + 2 114 9 3 \frac{4}{3} - \frac{2}{9 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{64}{27} + \frac{2 \sqrt{114}}{9}}} + \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{64}{27} + \frac{2 \sqrt{114}}{9}} 349(21+23 i)32764+92114 2+(21+23 i)32764+92114

  • 4 3 + 2 9 ( − 1 2 + 3 i 2 ) 64 27 + 2 114 9 3 − ( − 1 2 + 3 i 2 ) 64 27 + 2 114 9 3 \frac{4}{3} +\frac{2}{9 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{64}{27} + \frac{2 \sqrt{114}}{9}}} -\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{64}{27} + \frac{2 \sqrt{114}}{9}} 34+9(21+23 i)32764+92114 2(21+23 i)32764+92114

  • (数值解)array([2.8812394])

  • 3.3 求方程组的符号解和数值解

{ x 2 − y − x = 3 x + 3 y = 6 \left\{ \begin{aligned} x^2-y-x&=3\\ x+3y=6 \end{aligned} \right. {x2yxx+3y=6=3

from sympy  import*
from  scipy.optimize import fsolve
x,y=symbols('x y')
exp1=x**2-y-x-3
exp2=x+3*y-6
print(solve([exp1,exp2],[x,y]))
结果:
#[(1/3 - sqrt(46)/3, sqrt(46)/9 + 17/9), (1/3 + sqrt(46)/3, 17/9 - sqrt(46)/9)]
  • 3.4 求边值问题 y ′ ′ + y = x cos ⁡ 2 x , y ( 0 ) = 1 , y ( 2 ) = 3 y^{''}+y=x\cos2x,y(0)=1,y(2)=3 y′′+y=xcos2x,y(0)=1,y(2)=3 的符号解.
from sympy  import*
y=Function('y')#将y定义为函数
exp=diff(y(x),x)+diff(y(x),x,2)-x*cos(2*x)
dsolve(exp,ics={y(0):1,y(2):3})#附上初值条件

y ( x ) = x sin ⁡ ( 2 x ) 10 − x cos ⁡ ( 2 x ) 5 + 4 sin ⁡ ( 2 x ) 25 + 13 cos ⁡ ( 2 x ) 100 + 27 e 2 cos ⁡ ( 4 ) − 87 − 36 e 2 sin ⁡ ( 4 ) + 300 e 2 − 100 + 100 e 2 + ( − 213 e 2 + 36 e 2 sin ⁡ ( 4 ) − 27 e 2 cos ⁡ ( 4 ) ) e − x − 100 + 100 e 2 y{\left(x \right)} = \frac{x \sin{\left(2 x \right)}}{10} - \frac{x \cos{\left(2 x \right)}}{5} + \frac{4 \sin{\left(2 x \right)}}{25} + \frac{13 \cos{\left(2 x \right)}}{100} + \frac{27 e^{2} \cos{\left(4 \right)} - 87 - 36 e^{2} \sin{\left(4 \right)} + 300 e^{2}}{-100 + 100 e^{2}} + \frac{\left(- 213 e^{2} + 36 e^{2} \sin{\left(4 \right)} - 27 e^{2} \cos{\left(4 \right)}\right) e^{- x}}{-100 + 100 e^{2}} y(x)=10xsin(2x)5xcos(2x)+254sin(2x)+10013cos(2x)+100+100e227e2cos(4)8736e2sin(4)+300e2+100+100e2(213e2+36e2sin(4)27e2cos(4))ex

  • 3.5已知

A 1 = [ 1 2 3 4 5 6 ] , A 2 = [ 1 1 2 2 3 4 ] , A 3 = [ 2    6 ] , A 4 = [ 3    2 ] A_1=\left[\begin{array}{rrr}1 & 2 \\3& 4\\5 & 6 \end{array}\right] , A_2=\left[\begin{array}{rrr}1 & 1 \\2& 2\\3 & 4 \end{array}\right] , A_3=[2~~6],A_4=[3~~2] A1= 135246 A2= 123124 ,A3=[2  6],A4=[3  2]
利用Python 分块矩阵的组合,求分块矩阵 A = [ A 1 A 2 A 3 A 4 ] A=\left[\begin{array}{rrr}A_1 & A_2 \\A_3& A_4 \end{array}\right] A=[A1A3A2A4] 的行列式 ∣ A ∣ |A| A .

A1=Matrix([[1,2],[3,4],[5,6]])
A2=Matrix([[1,1],[2,2],[3,4]])
A3=Matrix([2,6]).T
A4=Matrix([3,2]).T
A=A1.col_join(A3).row_join(A2.col_join(A4))#构造A
#求|A|
print"分块矩阵A:",A)
print"|A|:",A.det()# 求行列式
  • 3.6 求解下列线性方程组
    ( 1 ) { x 1 + 2 x 2 + x 3 − x 4 = 0 3 x 1 + 6 x 2 − x 3 − 3 x 4 = 0 5 x 1 + 10 x 2 + x 3 − 5 x 4 = 0 ( 2 ) { 2 x + y − z + w = 1 4 x + 2 y + − 2 z + w = 2 2 x + y − z − w = 1 (1)\left\{ \begin{aligned} x_1+2x_2+x_3-x_4=0\\ 3x_1+6x_2-x_3-3x_4=0\\ 5x_1+10x_2+x_3-5x_4=&0 \end{aligned} \right.\\ \\ (2) \left\{ \begin{aligned} 2x+y-z+w=1\\ 4x+2y+-2z+w&=2\\ 2x+y-z-w=1 \end{aligned} \right. (1) x1+2x2+x3x4=03x1+6x2x33x4=05x1+10x2+x35x4=0(2) 2x+yz+w=14x+2y+2z+w2x+yzw=1=2
#(1)
#1.代数解法(符号解)
A=Matrix([[1,2,1,-1],[3,6,-1,-3],[5,10,1,-5]])#创建矩阵
res1=A.nullspace()[0]#非齐次线性方程组(方程的个数小于未知数的个数-无穷多解)
res2=A.nullspace()[1] 
#res1 res2为解空间的基(基础解系)

#2.求解方程组
x1,x2,x3,x4=symbols('x1 x2 x3 x4')#创建符号变量
ep1=x1+2*x2+x3-x4
ep2=3*x1+6*x2-x3-3*x4
ep3=5*x1+10*x2+x3-5*x4
result=solve([ep1,ep2,ep3],[x1,x2,x3,x4])#结果为字典
#result: {x1: -2*x2 + x4, x3: 0}

#(2)
#1.代数解法(符号解)
B=Matrix([[1,2,-1,1],[4,2,-2,1],[2,1,-1,-1]])
b=Matrix([[1],[2],[1]])
P=B.row_join(b)#创建增广矩阵
print(P.rref()[0]#初等变换化简增广矩阵-推导出基础解系
#2.求解方程组
x,y,z,w=symbols('x y z w')
print(solve([2*x+y-z+w-1,4*x+2*y-2*z+w-2,2*x+y-z-w-1],[x,y,z,w])#{x: -y/2 + z/2 + 1/2, w: 0}

(1)基础解系: [ − 2 1 0 0 ] \left[\begin{array}{rrr}-2 \\1\\0\\0\end{array}\right] 2100 [ 1 0 0 1 ] \left[\begin{array}{rrr}1\\0\\0\\1 \end{array}\right] 1001

(2)化简后的增广矩阵: A = [ 1 1 2 − 1 2 0 1 2 0 0 0 1 0 0 0 0 0 0 ] A=\left[\begin{array}{rrr} 1 & \frac{1}{2} &-\frac{1}{2}&0&\frac{1}{2} \\0& 0&0&1&0\\0&0&0&0&0\end{array}\right] A= 100210021000102100 ,基础解系为 [ − 1 2 1 0 0 ] k 1 \left[\begin{array}{rrr}-\frac{1}{2} \\1\\0\\0\end{array}\right]k_1 21100 k1 + [ 1 2 0 0 0 ] k 2 +\left[\begin{array}{rrr}\frac{1}{2} \\0\\0\\0\end{array}\right]k_2 + 21000 k2 + [ 1 2 0 0 0 ] \left[\begin{array}{rrr}\frac{1}{2} \\0\\0\\0\end{array}\right] 21000

  • 3.7 先判断下列线性方程组的解的情况,然后求对应的唯一解,最小二乘解或最小范数解

  • pinv 伪逆:无穷多解时取最小范数解,矛盾方程(无解)时取最小二乘解
    ( 1 ) { 4 x 1 + 2 x 2 − x 3 = 2 3 x 1 − x 2 + 2 x 3 = 10 11 x 1 + 3 x 2 = 8 ( 2 ) { 2 x + 3 y + z = 4 x − 2 y + 4 z = − 5 3 x + 8 y − 2 z = 13 4 x − y + 9 z = − 6 (1)\left\{ \begin{aligned} 4x_1+2x_2-x_3&=2\\ 3x_1-x_2+2x_3&=10\\ 11x_1+3x_2=8 \end{aligned} \right.\\ \\ (2) \left\{ \begin{aligned} 2x+3y+z=4\\ x-2y+4z=-5\\ 3x+8y-2z=13\\ 4x-y+9z=-6 \end{aligned} \right. (1) 4x1+2x2x33x1x2+2x311x1+3x2=8=2=10(2) 2x+3y+z=4x2y+4z=53x+8y2z=134xy+9z=6

import numpy as np
import numpy.linalg as la
#(1)
#构造矩阵
A=np.array([[4,2,-1],[3,-1,2],[11,3,0]])
b=np.array([2,10,8]).reshape(3,1)
print('A的秩=',la.matrix_rank(A))#行列式为零
print('A的行列式=',la.det(A))
#无穷多解
#最小范数解
print('最小范数解:\n',la.pinv(A).dot(b))
#result:A的秩= 2
#A的行列式= 4.440892098500635e-15 (等价于0)
#最小范数解:
[[ 1.21304348]
[-1.44782609]
[ 1.95652174]]
#(2)
A=np.array([[2,3,1],[1,-2,4],[3,8,-2],[4,-1,9]])
b=np.array([4,-5,13,-6]).reshape(4,1)
print('A的秩=',la.matrix_rank(A))#行列式为零
#无解(未知数<方程)
#最小二乘解
print('最小二乘解:\n',la.pinv(A).dot(b))
#A的秩= 2
#最小二乘解:
[[ 0.33333333]
[ 1.33333333]
[-0.66666667]]
#注意!要使用la.solve()求解方程组的函数,必须满足为满秩矩阵
  • 3.8 求下列矩阵的特征值和特征向量
    A = [ 6 2 4 2 3 2 4 2 6 ] A=\left[\begin{array}{rrr} 6 & 2 &4\\ 2& 3&2\\ 4&2&6\end{array}\right] A= 624232426
#符号法构造矩阵
A=Matrix([[6,2,4],[2,3,2],[4,2,6]])
print('A的特征值=',A.eigenvals())#{11: 1, 2: 2}
print('A的特征向量=',A.eigenvects())

序列解包后的得到的特征向量 ( λ = 2 ) [ − 1 2 1 0 ] (\lambda=2)\left[\begin{array}{rrr} -\frac{1}{2} \\ 1 \\0\end{array}\right] (λ=2) 2110 , [ − 1 0 1 ] ,\left[\begin{array}{rrr} -1 \\ 0\\1\end{array}\right] , 101 ( λ = 11 ) [ 1 1 2 1 ] (\lambda=11)\left[\begin{array}{rrr} 1 \\ \frac{1}{2}\\1\end{array}\right] (λ=11) 1211

  • 3.9 已知二次型   f = x 1 2 + x 2 2 + x 3 2 + 2 a x 1 x 2 + 2 x 1 x 2 + 2 x 1 x 3 + 2 b x 2 x 3 ,   ~f=x_1^2+x_2^2+x_3^2+2ax_1x_2+2x_1x_2+2x_1x_3+2bx_2x_3,~  f=x12+x22+x32+2ax1x2+2x1x2+2x1x3+2bx2x3, 经过正交化变换化为标准型 f = y 2 2 + 2 y 3 2 f=y_2^2+2y_3^2 f=y22+2y32 ,求参数 a , b a,b a,b及所用的正交变换矩阵。
  • 二次型矩阵为:

A = [ 1 a + 1 2 1 a + 1 2 1 b 1 b 1 ] A=\left[\begin{array}{rrr} 1 & \frac{a+1}{2} &1\\ \frac{a+1}{2}&1&b\\ 1&b&1\end{array}\right] A= 12a+112a+11b1b1

  • 变换后的对角阵为:

[ 0 0 0 0 1 0 0 0 2 ] \left[\begin{array}{rrr} 0& 0&0\\0& 1&0\\0&0&2\end{array}\right] 000010002

#变换后的对角阵上的元素即为特征值
a,b,c=symbols('a b c')
A=Matrix([[x-1,-together((a+1)/2),-1],[-together((a+1)/2),x-1,-b],[-1,-b,x-1]])#构造拉姆达矩阵
ex1=A.det().subs(x,0)
ex2=A.det().subs(x,1)
ex3=A.det().subs(x,2)#不同特征值带入
#求解非线性方程组(确定参数a,b)
a,b=solve([ex1,ex2,ex3],[a,b])[0]
print("a:{0},b:{1}".format(a,b))#a:-1,b: 0
#构造实矩阵
B=Matrix([[1,0,1],[0,1,0],[1,0,1]])
#求特征向量
T1,T2,T3=B.eigenvects()
L=[T1[2][0],T2[2][0],T3[2][0]]
o1=GramSchmidt(L)#施密特正交化方法(实际求出的不同特征值下的特征向量已是正交向量组)
#构造正交矩阵
T=o1[0].row_join(o1[1]).row_join(o1[2])

最后求得的正交阵为 T = [ − 1 0 1 0 1 0 1 0 1 ] T=\left[\begin{array}{rrr} -1& 0&1\\0& 1&0\\1&0&1\end{array}\right] T= 101010101

  • 3.10 画出   cos ⁡ x 2 + 1   ~\cos\sqrt{x^2+1}~  cosx2+1   及它在0处的1,3,5阶泰勒展开式在 x ∈ [ − 3 , 3 ] x\in [-3,3] x[3,3]时的图形
from sympy import *
x=symbols('x')
plot((cos(sqrt(x**2+1))),(x,-3,3))
#泰勒展开
exp=cos(sqrt(x**2+1))
plot(exp,exp.series(x,0,1).removeO(),exp.series(x,0,3).removeO(),exp.series(x,0,5).removeO(),(x,-3,3))

在这里插入图片描述
在这里插入图片描述

  • 3.11 一只兔子在坐标位置(20,0)(单位:m)处以速率 v r = 3 m / s   v_r=3 m/s~ vr=3m/s 沿平行于y轴正向的方向奔跑;与此同时,一只猎狗在坐标原点处以速率 v d = 4.5 m / s v_d=4.5m/s vd=4.5m/s追击兔子.猎狗在追击兔子的过程中,方向始终朝向兔子的当前位置.请绘制猎狗追击兔子的近似曲线,并估计追击时间.
#参考CSDN python仿真
import numpy as np
from matplotlib.pyplot import *

Xr=[20];Yr=[0];vr=3#兔子的水平、竖直位置及速度
Xd=[0];Yd=[0];vd=4.5#猎狗的水平、竖直位置及速度
dt=0.1

L=20
n=0
while L>0.1:
    Yr.append(dt*vr+Yr[n])
    Xr.append(20)
    X=Xr[n]-Xd[n]
    Y=Yr[n]-Yd[n]
    L=np.sqrt(X**2+Y**2)#直角边长
    '''
    X:水平相对位置
    Y:竖直相对位置
    L:相对位置
    '''
    Yd.append(Yd[n]+vd*dt*Y/L)#列表更新
    Xd.append(Xd[n]+vd*dt*X/L)
    n+=1

print('所用时间:%.2f秒'%(n*dt))
plot(Xr,Yr,Xd,Yd)
show()
#所用时间: 8.10秒秒

在这里插入图片描述

  • 3.12 分别求下列积分数值解:

(1) ∫ 0 ∞ e − x sin ⁡ ( x 2 + 2 ) d x \int_{0}^{\infty}e^{-x}\sin(\sqrt{x^2+2})dx 0exsin(x2+2 )dx

(2) ∬ D ( x 2 + 2 y 2 ) d x d y \iint\limits_D(x^2+2y^2)dxdy D(x2+2y2)dxdy 其中 D D D是由曲线 x = y 2 , y = x − 2 x=y^2,y=x-2 x=y2,y=x2 所围成的平面区域.

(3) ∭ Ω z d x d y d z , \iiint\limits_\Omega zdxdydz, Ωzdxdydz, 其中   Ω   ~\Omega~  Ω  是由曲面 z = x 2 + y 2 z=x^2+y^2 z=x2+y2 与平面 z = 4 z=4 z=4 所围成的闭区域

#一重积分(默认辛普森积分法)
#定义函数
import numpy as np
from scipy.integrate import quad


f=lambda x:np.exp(-x)*np.sin(np.sqrt(x**2+2))
print("I1:",quad(f,0,np.inf)[0]) 
#先将该积分化为累次积分(抛物线与直线围成的区域)
f2=lambda y,x:x**2+2*y**2
print('I2:',dblquad(f2,1,4,-1,2)[0])
#三重积分(在椭圆抛物面与平面围成的区域上积分)
f3=lambda z,y,x: z
F=lambda x:np.sqrt(4-x**2)
print('I3:',tplquad(f3,-2,2,lambda x:-F(x),lambda x:F(x),0,4)[0] )
#结果
I1:
0.8328534212790222
I2: 81.0
I3: 100.53096491487351

  1. − 1 ≤ y ≤ 2 , 1 ≤ x ≤ 4 -1\le y\le 2,1\le x \le 4 1y2,1x4
  2. ∫ − 2 2 d x ∫ − 4 − x 2 4 − x 2 d y ∫ 0 4 z d z \int_{-2}^{2}dx\int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}}dy\int_{0}^4zdz 22dx4x2 4x2 dy04zdz
  • 3.13 求函数 f ( x ) = 2 e − x s i n x f(x)=2e^{-x}sinx f(x)=2exsinx在[0,3]上的极小点和极大点
from scipy.optimize import *
import numpy as np
from  sympy import *
x=symbols('x')
y=2*exp(-x)*sin(x)
print('极大点:'solve(diff(y,x),x)[0])#为极值点 pi/4
f=lambda x:2*np.exp(-x)*np.sin(x)
print('极小点:',fminbound(f,0,3))#非极值点,但是为区间上的最小值点 2.9999965472915386
#plot(y,(x,0,3))可以绘制图像观察如下:

在这里插入图片描述

  • 3.14 某容器内侧是由曲线 x 2 + y 2 = 4 y    ( 1 ≤ y ≤ 3 ) x^2+y^2=4y~~(1\le y\le3) x2+y2=4y  (1y3) x 2 + y 2 = 4 ( y ≤ 1 ) x^2+y^2=4(y\le 1) x2+y2=4(y1)绕y轴旋转一周而形成的曲面.
  1. 求容器的体积
  2. 若将容器内盛满的水从容器底部全部抽出,至少需要多少功?(长度单位为m,重力加速度 g = 9.8 m / s 2 , 水的密度 ρ = 1 0 3 k g / m 3 g=9.8 m/s^2,水的密度\rho=10^3kg/m^3 g=9.8m/s2,水的密度ρ=103kg/m3

1. 容器体积:(旋转曲面积分) π 2 ∫ a b f ( x ) 2 d x \frac{\pi}{2}\int_{a}^{b}f(x)^2dx 2πabf(x)2dx π 2 ∫ − 2 1 4 − y 2 d y + π 2 ∫ 1 3 4 − ( y − 1 ) 2 d y \frac{\pi}{2} \int_{-2}^{1}4-y^2dy+\frac{\pi}{2}\int_{1}^{3}4-(y-1)^2dy 2π214y2dy+2π134(y1)2dy

2.功的微元:   d W = m g h = ρ g h V ( ρ = m V ) = ρ g h S ( x ) d x ~dW=mgh=\rho ghV(\rho=\frac{m}{V})=\rho ghS(x)dx  dW=mgh=ρghV(ρ=Vm)=ρghS(x)dx (h 为将该微元体积的水抽到容器口的位移)

W = ∫ 1 3 ρ g π ( 3 − y ) ( 4 y − y 2 ) d y + ∫ − 2 1 ρ g π ( 4 − y 2 ) ( 3 − y ) d y W= \int_{1}^{3}\rho g\pi(3-y)(4y-y^2)dy+\int_{-2}^{1}\rho g\pi(4-y^2)(3-y)dy W=13ρgπ(3y)(4yy2)dy+21ρgπ(4y2)(3y)dy

import numpy as np
from  sympy import *
#注意积分只是一半的体积(x负半轴也要考虑)
res=integrate((4-y**2),(y,-2,1))+integrate((4-(y-1)**2),(y,1,3))*np.pi/2*2
print("容器的体积为:",res)#25.7551608191456
exp1=12*y-3*y**2-4*y**2+y**3
exp2=(4-y**2)*(3-y)
res1=(integrate(exp2,(y,-2,1))+integrate(exp1,(y,1,3)))*10**3*9.8*np.pi
print('做功为:%eJ'%res1)#科学计数法 1.126313e+06 J(焦耳)

  • 3.15 (1)一架重 5000 k g 5000kg 5000kg的飞机以 800 k m / h 800km/h 800km/h的航速开始着陆,在减速伞的作用下滑行 500 m 500m 500m后减速为 100 k m / h 100km/h 100km/h.设减速伞的阻力与飞机的速度成正比,并忽略飞机所受的其他外力,试计算减速伞的阻力系数

  • f = k v = − m a , − a = k m v = d v d x × d x d t = v d v d x , d x = m k d v ,   m k ∫ v 0 v 1 d v = − x ( 位移 ) f=kv=-ma,-a=\frac{k}{m}v=\frac{dv}{dx}\times\frac{dx}{dt}=v\frac{dv}{dx},dx=\frac{m}{k}dv,~\frac{m}{k}\int_{v_0}^{v_1}dv=-x(位移) f=kv=ma,a=mkv=dxdv×dtdx=vdxdv,dx=kmdv, kmv0v1dv=x(位移)

​ (2)将同样的减速伞配备在 8000 k g 8000kg 8000kg的飞机上,现已知机场跑道长度为 1200 m 1200m 1200m,若飞机着陆速度为 600 k m / h 600km/h 600km/h,问跑道长度是否能否保障飞机安全着陆

from  sympy import *
#求积分
v=symbols('v')
k=(5000*integrate(1,(v,800,100))/3.6)/(-500)#统一为国际单位
print('阻力系数f={}'.format(k))#阻力系数f=1944.44444444444
#反推:求末速度=0时的位移
M=8000
x=-(M/k)*(0-600)/3.6
print(x)#685.714285714286<1200 可以安全着陆
  • 3.16 求函数 f ( x 1 , x 2 ) = 100 ( x 2 − x 1 2 ) 2 + ( 1 − sin ⁡ ( x 1 ) ) 2 cos ⁡ ( x 2 ) f(x_1,x_2)=100(x_2-x_1^2)^2+(1-\sin(x_1))^2\cos(x_2) f(x1,x2)=100(x2x12)2+(1sin(x1))2cos(x2) 的局部极小点.
import numpy as np
from scipy.optimize import minimize
f=lambda x:100*(x[1]-x[0]**2)**2+(1-np.sin(x[1]))**2*np.cos(x[1])
x0=minimize(f,[0,0])
print('函数的局部极小点={0},极小值为{1}'.format(x0.x,x0.fun))
#结果:

函数的局部极小点=[2.99920288e-08 9.94829962e-03],极小值为0.9900510566055519

  • 3
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Python数学实验建模PDF是一本介绍Python数学实验建模方面应用的电子书。本书主要包括了Python数学库以及相关的实验建模案例。 首先,Python作为一种强大的编程语言,具有丰富的数学库可以用于进行各种数学计算和实验。例如,NumPy库可以进行向量化计算,而SciPy库提供了丰富的科学计算函数,可用于方程、优化问题等。本书会详细介绍这些库的使用方法,并通过实例帮助读者理和掌握。 其次,本书还会介绍Python建模方面的应用。数学建模是通过数学方法对现实问题进行抽象和分析,以便预测和决问题。Python提供了一些常用的建模工具,如SymPy库可以进行符号计算,而Pandas库则可以用于处理数据。通过本书的学习,读者可以了并掌握这些建模工具的使用技巧,并学会将其应用于实际问题的分析和求。 最后,本书还会通过一些实际案例来展示Python数学实验建模方面的应用。例如,可以介绍如何使用Python进行统计学分析、机器学习等。这些案例既能帮助读者巩固所学的知识,又能让他们了Python数学实验建模领域的潜力和广泛应用。 综上所述,Python数学实验建模PDF是一本介绍Python数学实验建模方面应用的电子书,通过介绍Python数学库和相关实例,帮助读者学习和掌握Python数学实验建模方面的应用技巧。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值