📌目标规划
目标规划(Goal Programming):考虑多个目标
求解思路:
- 加权系数法:为每一目标赋予一个权系数(体现目标之间的重要程度),将多目标转化为单目标问题
- 优先等级法:将各目标按其重要程度不同的有先等级,转化为单目标模型
目标规划无最优解的概念,只有满意解
数学概念:
-
正负偏差变量( f i ( i = 1 , … , l ) f_i~~~(i=1,\dots,l) fi (i=1,…,l)为第i个目标函数, d i 0 d_i^0 di0为 f i f_i fi的目标值)
- 正偏差变量: d i + = m a x { f i − d i 0 , 0 } d_i^+=max\{f_i-d_i^0,0\} di+=max{
fi−di0,0}
- 表示超过目标值的部分(未超过则 d i + = 0 d_i^+=0 di+=0)
- 负偏差变量: d i − = − m i n { f i − d i 0 , 0 } d_i^-=-min\{f_i-d_i^0,0\} di−=−min{
fi−di0,0}
- 表示未达到目标值的部分(超过则 d i − = 0 d_i^-=0 di−=0)
- d i + × d i − = 0 d_i^+\times d_i^-=0 di+×di−=0 (不可能已超过又未达到)
- 正偏差变量: d i + = m a x { f i − d i 0 , 0 } d_i^+=max\{f_i-d_i^0,0\} di+=max{
fi−di0,0}
-
绝对约束和目标约束
- 绝对约束:必须严格满足的不等式和等式约束(不满足则无可行解(线性规划))硬约束
- 目标约束:可以在约束中加入正负偏移差,在达到目标时允许偏移软约束
- 这里的正负偏移就相当于松弛变量:将不等式化为等式
-
优先因子(优先等级)权系数
- 优先因子: P 1 , P 2 … , P k ≫ P k + 1 , k = 1 , 2 … , q − 1 P_1,P_2\dots,P_k\gg P_{k+1},k=1,2\dots,q-1 P1,P2…,Pk≫Pk+1,k=1,2…,q−1 表示 P k 比 P k + 1 P_k比P_{k+1} Pk比Pk+1 有更大的优先权
- 当两个目标有相同的优先因子时:可以用 w j w_j wj 权系数来区别
- 优先因子: P 1 , P 2 … , P k ≫ P k + 1 , k = 1 , 2 … , q − 1 P_1,P_2\dots,P_k\gg P_{k+1},k=1,2\dots,q-1 P1,P2…,Pk≫Pk+1,k=1,2…,q−1 表示 P k 比 P k + 1 P_k比P_{k+1} Pk比Pk+1 有更大的优先权
-
目标规划的目标函数:
- 目标函数(准则函数):按目标约束的正负偏差变量和赋予的优先因子构造,要尽可能缩小偏离目标值,即偏差变量的加权和最小
- 第 i i i个目标要求恰好达到目标值: m i n w i − d i − + w i + d i + min~~w_i^-d_i^-+w_i^+d_i^+ min wi−di−+wi+di+
- 第 i
- 目标函数(准则函数):按目标约束的正负偏差变量和赋予的优先因子构造,要尽可能缩小偏离目标值,即偏差变量的加权和最小