数学建模part(3):目标规划

📌目标规划

目标规划(Goal Programming):考虑多个目标

求解思路:

  • 加权系数法:为每一目标赋予一个权系数(体现目标之间的重要程度),将多目标转化为单目标问题
  • 优先等级法:将各目标按其重要程度不同的有先等级,转化为单目标模型

目标规划无最优解的概念,只有满意解

数学概念:

  1. 正负偏差变量( f i     ( i = 1 , … , l ) f_i~~~(i=1,\dots,l) fi   (i=1,,l)为第i个目标函数, d i 0 d_i^0 di0 f i f_i fi的目标值)

    • 正偏差变量: d i + = m a x { f i − d i 0 , 0 } d_i^+=max\{f_i-d_i^0,0\} di+=max{ fidi0,0}
      • 表示超过目标值的部分(未超过则 d i + = 0 d_i^+=0 di+=0
    • 负偏差变量: d i − = − m i n { f i − d i 0 , 0 } d_i^-=-min\{f_i-d_i^0,0\} di=min{ fidi0,0}
      • 表示未达到目标值的部分(超过则 d i − = 0 d_i^-=0 di=0
    • d i + × d i − = 0 d_i^+\times d_i^-=0 di+×di=0 (不可能已超过又未达到)
  2. 绝对约束和目标约束

    • 绝对约束:必须严格满足的不等式和等式约束(不满足则无可行解(线性规划))硬约束
    • 目标约束:可以在约束中加入正负偏移差,在达到目标时允许偏移软约束
      • 这里的正负偏移就相当于松弛变量:将不等式化为等式
  3. 优先因子(优先等级)权系数

    • 优先因子: P 1 , P 2 … , P k ≫ P k + 1 , k = 1 , 2 … , q − 1 P_1,P_2\dots,P_k\gg P_{k+1},k=1,2\dots,q-1 P1,P2,PkPk+1,k=1,2,q1 表示 P k 比 P k + 1 P_k比P_{k+1} PkPk+1 有更大的优先权
      • 当两个目标有相同的优先因子时:可以用 w j w_j wj 权系数来区别
  4. 目标规划的目标函数:

    • 目标函数(准则函数):按目标约束的正负偏差变量和赋予的优先因子构造,要尽可能缩小偏离目标值,即偏差变量的加权和最小
      • i i i个目标要求恰好达到目标值: m i n    w i − d i − + w i + d i + min~~w_i^-d_i^-+w_i^+d_i^+ min  widi+wi+di+
      • i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值