切面条_算法设计

1.算法设计要求

一根高筋拉面,中间切一刀,可以得到2根面条。
如果先对折1次,中间切一刀,可以得到3根面条。
如果连续对折2次,中间切一刀,可以得到5根面条。 那么,连续对折10次,中间切一刀,会得到多少面条呢?

2.问题分析

对折0次,中间切一刀,可以得到2根面条。
对折1次,中间切一刀,可以得到3根面条。
对折2次,中间切一刀,可以得到5根面条。
对折3次,中间切一刀,可以得到9根面条。
对折4次,中间切一刀,可以得到17根面条。
对折5次,中间切一刀,可以得到33根面条。

对折n次,中间切一刀,可以得到2^n+1根面条。

令对折次数为a,切后的小块为b
在这里插入图片描述

3.算法设计

#include <stdio.h>
int main(){
	int a,b=2,c=1;      //a表示对折次数 ,b表示切后的块数,定义一个c=1;
	int x=0;
	printf("请输入对折次数:");
	scanf("%d",&a);
	for (int i = 0; i < a; i++) {
		b += c;     //2^n+1
		c=c*2;      //2^n
		++x;
		printf("对折 %d 次,中间切一刀,可以得到 %d 根面条。\n",x,b);
		//printf("%d \n",b);
	}
	return 0;
}

运行结果为:

请输入对折次数:10
对折 1 次,中间切一刀,可以得到 3 根面条。
对折 2 次,中间切一刀,可以得到 5 根面条。
对折 3 次,中间切一刀,可以得到 9 根面条。
对折 4 次,中间切一刀,可以得到 17 根面条。
对折 5 次,中间切一刀,可以得到 33 根面条。
对折 6 次,中间切一刀,可以得到 65 根面条。
对折 7 次,中间切一刀,可以得到 129 根面条。
对折 8 次,中间切一刀,可以得到 257 根面条。
对折 9 次,中间切一刀,可以得到 513 根面条。
对折 10 次,中间切一刀,可以得到 1025 根面条。
--------------------------------

时时间复杂度是O(n)。

4.算法改进

#include <stdio.h>
#include <math.h>
int main(){
	int a,b;
	printf("请输入对折次数:");
	scanf("%d",&a);
    b=pow(2,a)+1;
	printf("可以得到%d根面条。",b);
	return 0;
}

运行结果为:

请输入对折次数:10
可以得到1025根面条。
--------------------------------

时时间复杂度是O(1)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是一种可能的解法: ```python n, m = map(int, input().split()) a = list(map(int, input().split())) # 定义一个函数,判断给定的长度是否可以成m段 def check(length): count = 0 for x in a: count += x // length return count >= m # 二分答案,找到最大的长度 left, right = 1, max(a) while left <= right: mid = (left + right) // 2 if check(mid): left = mid + 1 else: right = mid - 1 print(right) ``` 首先,读入输入数据。其中,`n`表示初始面条的长度个数,`m`表示要成的段数,`a`是一个长度为`n`的列表,表示每个初始面条的长度。 接下来,我们定义一个函数`check`,用来判断给定的长度是否可以成`m`段。具体实现方式是,遍历所有初始面条的长度,将每个长度除以给定的长度,得到的商之和即为可以成的段数。如果这个段数大于等于`m`,说明给定的长度可以成`m`段(因为我们最终要找到的是最大的满足件的长度,因此这里是大于等于)。 然后,我们使用二分答案来找到最大的长度。具体实现方式是,设定一个左边界`left`和右边界`right`,初始时分别为1和所有初始面条的长度中的最大值。每取中间值`mid`,判断是否可以将初始面条成`m`段,如果可以,说明答案在`mid`的右边,因此更新左边界为`mid + 1`;如果不行,说明答案在`mid`的左边,因此更新右边界为`mid - 1`。最终,当`left > right`时,二分结束,最终的答案即为`right`。 最后,输出答案即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XJSFDX_Ali

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值