CF1984G Magic Trick II 题解

前记

第一篇黑题题解。难调。好写。码量不大

Description

给定一个大小为 n n n 的排列 p p p,选择一个 k k k,对 p p p 执行操作若干次使得 p i = i p_i=i pi=i

每次操作有两个参数 i , j i,j i,j 表示将从 p i p_i pi 开始的连续 k k k 个数从 p p p 中取出,再插入此时 p p p 中第 j − 1 j-1 j1 和第 j j j 个数之间。

如, p = [ 1 , 2 , 3 , 4 , 5 ] p=[1,2,3,4,5] p=[1,2,3,4,5] k k k 3 3 3,依次执行操作 ( 2 , 1 ) (2,1) (2,1) ( 3 , 2 ) (3,2) (3,2)

[ 2 , 3 , 4 ] [2,3,4] [2,3,4] 取出,此时 p = [ 1 , 5 ] p=[1,5] p=[1,5],在将 [ 2 , 3 , 4 ] [2,3,4] [2,3,4] 放在第 0 0 0 个数和第 1 1 1 个数之间(即开头),操作完成后 p = [ 2 , 3 , 4 , 1 , 5 ] p=[2,3,4,1,5] p=[2,3,4,1,5]

再执行 ( 3 , 2 ) (3,2) (3,2) p = [ 2 , 4 , 1 , 5 , 3 ] p=[2,4,1,5,3] p=[2,4,1,5,3]

Solution

结论: k ≥ n − 3 k\ge n-3 kn3

可通过打表瞎猜得出。

实际上不一定要得出这个结论,因为题目要求最大化 k k k,所以 k k k n n n 依次递减,越早能构造出越好。

下面证明并构造。

k = n k=n k=n

此时序列无论如何操作都不会变,所以要求 p p p 一开始就符合条件。

k = n − 1 k=n-1 k=n1

此时序列每次操作等于循环移一位,要求 p p p 一开始在循环移若干位后能满足条件。

k = n − 2 k=n-2 k=n2

先考虑 n n n 为奇数的情况。

每一次执行 ( 3 , 1 ) (3,1) (3,1) 相当于循环移 2 2 2 位,由于 n n n 为奇数,每个数所在下标奇偶性会改变,所以在执行 n n n 此操作以内能使序列循环移位任意长度。

  1. 先把 n o w now now(初始为 2 2 2)移到第 1 1 1 位,操作为 ( 3 , 1 ) (3,1) (3,1)

  2. 在后 n − 1 n-1 n1 个数中不断移位使 n o w − 1 now-1 now1 在第 n n n 位,操作为 ( 3 , 2 ) (3,2) (3,2)

  3. 循环移一次,使得 n o w now now 接在 n o w − 1 now-1 now1 的后面,操作为 ( 3 , 1 ) (3,1) (3,1)

这样 n o w now now n o w − 1 now-1 now1 就有序了,并且之后不会再分开。

然后 n o w = n o w + 1 now=now+1 now=now+1,重复以上步骤直至 n o w = n + 1 now=n+1 now=n+1 时停止。

再考虑 n n n 为偶数的情况。

每一次执行 ( 3 , 1 ) (3,1) (3,1) 也相当于循环移 2 2 2 位,但无法改变下标奇偶性,所以在上面操作 1 1 1 中, n o w now now 可能无法移到第 1 1 1 位,但一定能移到第 1 1 1 n n n 位,因为 1 1 1 n n n 奇偶性不同。

如果能移到第 1 1 1 位,就同上操作,否则移到第 n n n 位,再在前 n − 1 n-1 n1 个数中循环移位直到第 n − 1 n-1 n1 位为 n o w − 1 now-1 now1,操作为 ( 2 , 1 ) (2,1) (2,1),注意此时不再需要操作 3 3 3

考虑 1 1 1 n − 2 n-2 n2 已排好序,此时有六种情况:

  • n , n − 1 , 1 … n − 2 n,n-1,1\dots n-2 n,n1,1n2

  • n − 1 , n , 1 … n − 2 n-1,n,1\dots n-2 n1,n,1n2

  • n , 1 … n − 2 , n − 1 n,1\dots n-2,n-1 n,1n2,n1

  • n − 1 , 1 … n − 2 , n n-1,1\dots n-2,n n1,1n2,n

  • 1 … n − 2 , n , n − 1 1\dots n-2,n,n-1 1n2,n,n1

  • 1 … n − 2 , n − 1 , n 1\dots n-2,n-1,n 1n2,n1,n

2 2 2 种能移位成第 5 5 5 种,第 4 4 4 种通过操作 ( 2 , 1 ) (2,1) (2,1) 变为第 5 5 5 种。

另外 3 3 3 种无论如何都无法变为第 5 5 5 种。

为什么?

对于操作 ( i , j ) (i,j) (i,j),若 [ p i , p i + 1 , p i + k − 1 ] [p_i,p_{i+1},p_{i+k-1}] [pi,pi+1,pi+k1] 会与 [ p x … p y ] [p_x\dots p_y] [pxpy] 相对位置发生变化,设原来有 a a a 对逆序对,操作后则会有 k × ( y − x + 1 ) − a k\times(y-x+1)-a k×(yx+1)a 对逆序对,发现逆序对数奇偶性不变,因为 k k k 为偶数, k × ( y − x + 1 ) k\times(y-x+1) k×(yx+1) 也就变为偶数。

因此每次操作无法改变序列内逆序对个数。

若初始时 p p p 就有奇数个逆序对,则最终总会有 1 1 1 个逆序对不会被消去。

那么此时 k = n − 3 k=n-3 k=n3 才能解决问题。

k = n − 3 k=n-3 k=n3

先将 n n n 移到第 n n n 位。

这里的操作较特殊。

x x x 表示 n n n 所在下标。

x ≥ k x\ge k xk,则将以 n n n 为结尾的长度为 k k k 的段放在末尾即可,操作为 ( x − ( n − 3 ) + 1 , 4 ) (x-(n-3)+1,4) (x(n3)+1,4)

x < k x<k x<k,则将以 1 1 1 为开头的长度为 k k k 的段放在末尾,操作为 ( 1 , 4 ) (1,4) (1,4),即循环移位 3 3 3 位,直到满足上面的条件并执行上面的操作。

然后使 1 … n − 1 1\dots n-1 1n1 在前 n − 1 n-1 n1 位排序,可以发现,此时总长 n − 1 n-1 n1 为奇数,且 k = n − 3 = ( n − 1 ) − 2 k=n-3=(n-1)-2 k=n3=(n1)2,所以将其视为上面 n n n 为奇数的情况并做操作即可。

注意下面实现时,每次操作暴力改变是 O ( n ) O(n) O(n) 的,但实际上可以用 O ( 1 ) O(1) O(1) 的链表或其他东西维护,使其总时间复杂度降为 O ( n 2 ) O(n^2) O(n2),但由于 n 2 n^2 n2 次操作严格跑不满,所以 O ( n 3 ) O(n^3) O(n3) 也能过。

Code

#include<bits/stdc++.h>
using namespace std;
int t;
int n,k,cnt,now;
int a[1010],b[1010];
int ans[5000500][2];
void alter(int x,int y){
	int s=1;
	ans[++cnt][0]=x,ans[cnt][1]=y;
	for(int i=1;i<y;i++){
		if(s>=x&&s<=x+k) s=x+k;
		b[i]=a[s++];
	}
	for(int i=y;i<=y+k-1;i++){
		b[i]=a[x+i-y];
	}
	for(int i=y+k;i<=n;i++){
		if(s>=x&&s<=x+k) s=x+k;
		b[i]=a[s++];
	}
	for(int i=1;i<=n;i++){
		a[i]=b[i];
	}
}
int find(int x){
	for(int i=1;i<=n;i++){
		if(a[i]==x) return i;
	}
}
void print(){
	cout<<cnt<<'\n';
	for(int i=1;i<=cnt;i++){
		cout<<ans[i][0]<<" "<<ans[i][1]<<'\n';
	}
}
void solve(){
	cin>>n;
	cnt=0;
	int cnt1=0,cnt2=0;
	cin>>a[1];
	for(int i=2;i<=n;i++){
		cin>>a[i];
		if(a[i]!=a[i-1]+1) cnt2++;
		for(int j=1;j<i;j++){
			if(a[i]<a[j]) cnt1++;
		}
	}
	if(cnt2==0){
		cout<<n<<'\n'<<0<<'\n';
		return ;
	}
	if(cnt2==1){
		k=n-1;
		cout<<k<<'\n';
		while(a[1]!=1){
			alter(2,1);
		}
		print();
		return ;
	}
	if(n%2==1){
		k=n-2,now=2;
		cout<<k<<'\n';
		while(now<=n){
			while(a[1]!=now){
				alter(3,1);
			}
			while(a[n]!=now-1){
				alter(3,2);
			}
			alter(3,1);
			now++;
		}
		while(a[1]!=1){
			alter(3,1);
		}
		print();
		return ;
	}
	if(cnt1%2==0){
		k=n-2,now=2;
		cout<<k<<'\n';
		int type;
		while(now<=n){
			type=find(now)%2;
			if(type==0){
				while(a[n]!=now){
					alter(3,1);
				}
				while(a[n-1]!=now-1){
					alter(2,1);
				}
				now++;
			}else{
				while(a[1]!=now){
					alter(3,1); 
				}
				while(a[n]!=now-1){
					alter(3,2);
				}
				alter(3,1);
				now++;
			}
		}
		while(a[1]!=1){
			alter(3,1);
		}
		print();
		return ;
	}else{
		k=n-3,now=2;
		cout<<k<<'\n';
		while(a[n]!=n){
			int x=find(n);
			if(x<n-3){
				alter(1,4);
			}else{
				alter(x-(n-3)+1,4);
			}
		}
		while(now<=n-1){
			while(a[1]!=now){
				alter(3,1);
			}
			while(a[n-1]!=now-1){
				alter(3,2);
			}
			while(a[1]!=1){
				alter(3,1);
			}
			now++;
		}
		print();
		return ;
	}
	
}
int main(){
	ios::sync_with_stdio(0);
	cin.tie(0);
	cin>>t;
	while(t--){
		solve();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值