2022CSP-J 题解[完整版]

前言

“西西弗”的脑子是被宇宙射线影响了吗,造的题目我都写到睡着了……

T 1 T1 T1 [CSP-J 2022] 乘方

题目描述

小文同学刚刚接触了信息学竞赛,有一天她遇到了这样一个题:给定正整数 a a a b b b,求 a b a^b ab 的值是多少。

a b a^b ab b b b a a a 相乘的值,例如 2 3 2^3 23 即为 3 3 3 2 2 2 相乘,结果为 2 × 2 × 2 = 8 2 \times 2 \times 2 = 8 2×2×2=8

“简单!”小文心想,同时很快就写出了一份程序,可是测试时却出现了错误。

小文很快意识到,她的程序里的变量都是 int 类型的。在大多数机器上,int 类型能表示的最大数为 2 31 − 1 2^{31} - 1 2311,因此只要计算结果超过这个数,她的程序就会出现错误。

由于小文刚刚学会编程,她担心使用 int 计算会出现问题。因此她希望你在 a b a^b ab 的值超过 10 9 {10}^9 109 时,输出一个 -1 进行警示,否则就输出正确的 a b a^b ab 的值。

然而小文还是不知道怎么实现这份程序,因此她想请你帮忙。

输入格式

输入共一行,两个正整数 a , b a, b a,b

输出格式

输出共一行,如果 a b a^b ab 的值不超过 10 9 {10}^9 109,则输出 a b a^b ab 的值,否则输出 -1

样例 #1
样例输入 #1
10 9
样例输出 #1
1000000000
样例 #2
样例输入 #2
23333 66666
样例输出 #2
-1
提示

对于 10 % 10 \% 10% 的数据,保证 b = 1 b = 1 b=1
对于 30 % 30 \% 30% 的数据,保证 b ≤ 2 b \le 2 b2
对于 60 % 60 \% 60% 的数据,保证 b ≤ 30 b \le 30 b30 a b ≤ 10 18 a^b \le {10}^{18} ab1018
对于 100 % 100 \% 100% 的数据,保证 1 ≤ a , b ≤ 10 9 1 \le a, b \le {10}^9 1a,b109

分析

这道题很简单啊。因为它的数据范围比较大,所以我们只需要用一个快速幂来计算,在每次res=res*a时判断一下是否大于 1 0 9 10^9 109 即可。
特判: 1 0 9 10^9 109这个数有点特别,因为它的平方已经超 l o n g l o n g long long longlong 了,所以我们要在快速幂之前判断一下 1 0 9 10^9 109 这个数,如果 b b b 大于1,直接输出 − 1 -1 1

CODE

#include<bits/stdc++.h>
#define int long long

using namespace std;

const int inf=1e9;
int n,m;

int qmi(int a,int b){
	int ans=1;
	while(b){
		if(b&1){
			ans=ans*a;
			if(ans>inf||ans<0) return -1;
		}
		a=a*a,b>>=1;
	}
	if(ans<0||ans>inf) return -1;
	return ans;
}

signed main() 
{
	cin>>n>>m;
	
	if(n>inf||(m>64&&n!=1)) return cout<<-1,0;
	cout<<qmi(n,m);
	
	return 0;
}

总结

就是以个模板题,当然也可以直接 O ( n ) O(n) O(n) 循环,做法差不多。

T 2 T2 T2 [CSP-J 2022] 解密

题目描述

给定一个正整数 k k k,有 k k k 次询问,每次给定三个正整数 n i , e i , d i n_i, e_i, d_i ni,ei,di,求两个正整数 p i , q i p_i, q_i pi,qi,使 n i = p i × q i n_i = p_i \times q_i ni=pi×qi e i × d i = ( p i − 1 ) ( q i − 1 ) + 1 e_i \times d_i = (p_i - 1)(q_i - 1) + 1 ei×di=(pi1)(qi1)+1

输入格式

第一行一个正整数 k k k,表示有 k k k 次询问。

接下来 k k k 行,第 i i i 行三个正整数 n i , d i , e i n_i, d_i, e_i ni,di,ei

输出格式

输出 k k k 行,每行两个正整数 p i , q i p_i, q_i pi,qi 表示答案。

为使输出统一,你应当保证 p i ≤ q i p_i \leq q_i piqi

如果无解,请输出 NO

样例 #1
样例输入 #1
10
770 77 5
633 1 211
545 1 499
683 3 227
858 3 257
723 37 13
572 26 11
867 17 17
829 3 263
528 4 109
样例输出 #1
2 385
NO
NO
NO
11 78
3 241
2 286
NO
NO
6 88
提示

【数据范围】

以下记 m = n − e × d + 2 m = n - e \times d + 2 m=ne×d+2

保证对于 100 % 100\% 100% 的数据, 1 ≤ k ≤ 10 5 1 \leq k \leq {10}^5 1k105,对于任意的 1 ≤ i ≤ k 1 \leq i \leq k 1ik 1 ≤ n i ≤ 10 18 1 \leq n_i \leq {10}^{18} 1ni1018 1 ≤ e i × d i ≤ 10 18 1 \leq e_i \times d_i \leq {10}^{18} 1ei×di1018
1 ≤ m ≤ 10 9 1 \leq m \leq {10}^9 1m109

测试点编号 k ≤ k \leq k n ≤ n \leq n m ≤ m \leq m特殊性质
1 1 1 1 0 3 10^3 103 1 0 3 10^3 103 1 0 3 10^3 103保证有解
2 2 2 1 0 3 10^3 103 1 0 3 10^3 103 1 0 3 10^3 103
3 3 3 1 0 3 10^3 103 1 0 9 10^9 109 6 × 1 0 4 6\times 10^4 6×104保证有解
4 4 4 1 0 3 10^3 103 1 0 9 10^9 109 6 × 1 0 4 6\times 10^4 6×104
5 5 5 1 0 3 10^3 103 1 0 9 10^9 109 1 0 9 10^9 109保证有解
6 6 6 1 0 3 10^3 103 1 0 9 10^9 109 1 0 9 10^9 109
7 7 7 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109保证若有解则 p = q p=q p=q
8 8 8 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109保证有解
9 9 9 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109
10 10 10 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109

分析

根据题目下面的: m = n − e × d + 2 m=n−e×d+2 m=ne×d+2,我们可以推断出: p + q = m p+q=m p+q=m。然后用二分来查找 p , q p,q p,q,只要有一次的 m i d = n mid=n mid=n,就输出。否则输出 − 1 -1 1

CODE

#include<bits/stdc++.h>
#define int long long

using namespace std;

int aa(int n,int m)
{
	int L=0,R=(m>>1);
	
	while(L<=R)
	{
		int mid=L+((R-L)>>1);
		int sum=mid*(m-mid);//mid与m-mid表示每次查找的pq
		
		if(sum==n)//pq相乘是否等于n
		{
			return mid;
		}
		else 
		{
			if(sum>n)
			{
				R=mid-1;
			}
			else
			{
				L=mid+1;
			}
		}
	}
	
	return -1;//无解
}

int t;

signed main()
{
	cin>>t;
	
	while(t--)
	{
		int n,e,d;
		cin>>n>>e>>d;
		
		int m=n-e*d+2;
		
		int ans=aa(n,m);//二分查找
		
		if(ans!=-1)
		{
			cout<<ans<<" "<<m-ans<<endl;
		}
		else
		{
			cout<<"NO\n";
		}
	}
	
	return 0;
}

总结

这道题思路还是比较简单,就是二分这个不容易想起来(导致我TLE了)。

T 3 T3 T3 [CSP-J 2022] 逻辑表达式

题目描述

逻辑表达式是计算机科学中的重要概念和工具,包含逻辑值、逻辑运算、逻辑运算优先级等内容。

在一个逻辑表达式中,元素的值只有两种可能: 0 0 0(表示假)和 1 1 1(表示真)。元素之间有多种可能的逻辑运算,本题中只需考虑如下两种:“与”(符号为 &)和“或”(符号为 |)。其运算规则如下:

0 & 0 = 0 & 1 = 1 & 0 = 0 0 \mathbin{\&} 0 = 0 \mathbin{\&} 1 = 1 \mathbin{\&} 0 = 0 0&0=0&1=1&0=0 1 & 1 = 1 1 \mathbin{\&} 1 = 1 1&1=1
0 ∣ 0 = 0 0 \mathbin{|} 0 = 0 00=0 0 ∣ 1 = 1 ∣ 0 = 1 ∣ 1 = 1 0 \mathbin{|} 1 = 1 \mathbin{|} 0 = 1 \mathbin{|} 1 = 1 01=10=11=1

在一个逻辑表达式中还可能有括号。规定在运算时,括号内的部分先运算;两种运算并列时,& 运算优先于 | 运算;同种运算并列时,从左向右运算。

比如,表达式 0|1&0 的运算顺序等同于 0|(1&0);表达式 0&1&0|1 的运算顺序等同于 ((0&1)&0)|1

此外,在 C++ 等语言的有些编译器中,对逻辑表达式的计算会采用一种“短路”的策略:在形如 a&b 的逻辑表达式中,会先计算 a 部分的值,如果 a = 0 a = 0 a=0,那么整个逻辑表达式的值就一定为 0 0 0,故无需再计算 b 部分的值;同理,在形如 a|b 的逻辑表达式中,会先计算 a 部分的值,如果 a = 1 a = 1 a=1,那么整个逻辑表达式的值就一定为 1 1 1,无需再计算 b 部分的值。

现在给你一个逻辑表达式,你需要计算出它的值,并且统计出在计算过程中,两种类型的“短路”各出现了多少次。需要注意的是,如果某处“短路”包含在更外层被“短路”的部分内则不被统计,如表达式 1|(0&1) 中,尽管 0&1 是一处“短路”,但由于外层的 1|(0&1) 本身就是一处“短路”,无需再计算 0&1 部分的值,因此不应当把这里的 0&1 计入一处“短路”。

输入格式

输入共一行,一个非空字符串 s s s 表示待计算的逻辑表达式。

输出格式

输出共两行,第一行输出一个字符 01,表示这个逻辑表达式的值;第二行输出两个非负整数,分别表示计算上述逻辑表达式的过程中,形如 a&ba|b 的“短路”各出现了多少次。

样例 #1
样例输入 #1
0&(1|0)|(1|1|1&0)
样例输出 #1
1
1 2
样例 #2
样例输入 #2
(0|1&0|1|1|(1|1))&(0&1&(1|0)|0|1|0)&0
样例输出 #2
0
2 3
提示

【样例解释 #1】

该逻辑表达式的计算过程如下,每一行的注释表示上一行计算的过程:

0&(1|0)|(1|1|1&0)
=(0&(1|0))|((1|1)|(1&0)) //用括号标明计算顺序
=0|((1|1)|(1&0))   //先计算最左侧的 &,是一次形如 a&b 的“短路”
=0|(1|(1&0))       //再计算中间的 |,是一次形如 a|b 的“短路”
=0|1               //再计算中间的 |,是一次形如 a|b 的“短路”
=1

【数据范围】

∣ s ∣ \lvert s \rvert s 为字符串 s s s 的长度。

对于所有数据, 1 ≤ ∣ s ∣ ≤ 10 6 1 \le \lvert s \rvert \le {10}^6 1s106。保证 s s s 中仅含有字符 01&|() 且是一个符合规范的逻辑表达式。保证输入字符串的开头、中间和结尾均无额外的空格。保证 s s s
中没有重复的括号嵌套(即没有形如 ((a)) 形式的子串,其中 a 是符合规范的逻辑表
达式)。

测试点编号 ∣ s ∣ ≤ \lvert s \rvert \le s特殊条件
1 ∼ 2 1 \sim 2 12 3 3 3
3 ∼ 4 3 \sim 4 34 5 5 5
5 5 5 2000 2000 20001
6 6 6 2000 2000 20002
7 7 7 2000 2000 20003
8 ∼ 10 8 \sim 10 810 2000 2000 2000
11 ∼ 12 11 \sim 12 1112 10 6 {10}^6 1061
13 ∼ 14 13 \sim 14 1314 10 6 {10}^6 1062
15 ∼ 17 15 \sim 17 1517 10 6 {10}^6 1063
18 ∼ 20 18 \sim 20 1820 10 6 {10}^6 106

其中:
特殊性质 1 为:保证 s s s 中没有字符 &
特殊性质 2 为:保证 s s s 中没有字符 |
特殊性质 3 为:保证 s s s 中没有字符 ()

【提示】

以下给出一个“符合规范的逻辑表达式”的形式化定义:

  • 字符串 01 是符合规范的;
  • 如果字符串 s 是符合规范的,且 s 不是形如 (t) 的字符串(其中 t 是符合规范的),那么字符串 (s) 也是符合规范的;
  • 如果字符串 ab 均是符合规范的,那么字符串 a&ba|b 均是符合规范的;
  • 所有符合规范的逻辑表达式均可由以上方法生成。

分析

一道经典大模拟啊,根据题意做就行了。唯一的难点应该就是有先级,这个必须按照括号,按位与,按位或的顺序计算。

CODE

#include<bits/stdc++.h>

using namespace std;

const int S=1000010;
char s[S];

int li[S],ce[S],ls[S],la[S],sk[S];

int work(int l,int r,int &tand,int &tor)//大模拟函数
{
	while(li[r]==l)
	{
		r--;
		l++;
	}
	if(l==r&&isdigit(s[l]))
	{
		return s[l]-'0';
	}
	int opt=2,w=0;
	
	if(ls[r]>=l)
	{
		opt=0;
		w=ls[r];
	}
	else
	{
		opt=1;
		w=la[r];
	}
	
	int lsum=work(l,w-1,tand,tor);
	
	if((!lsum)&&opt)
	{
		tand++;
		return 0;
	}
	else 
	{
		if(lsum&&(!opt))
		{
			tor++;
			return 1;
		}
	}
	
	int rsum=work(w+1,r,tand,tor);
	
	if(opt==1)
	{
		return lsum&rsum;
	}
	else
	{
		return lsum|rsum;
	}
}

int main()
{
	scanf("%s",s+1);

	int tot=0;
	
	for(int i=1;i<=strlen(s+1);i++)
	{
		if(s[i]=='(')
		{
			sk[++tot]=i;
		}
		if(s[i]==')')
		{
			int lst=sk[tot--];
			li[i]=lst;
		}
		
		ce[i]=tot;
	}
	for(int i=0;i<=strlen(s+1);i++)
	{
		sk[i]=0;
	}
	for(int i=1;i<=strlen(s+1);i++)
	{
		if(s[i]=='|')
		{
			sk[ce[i]]=i;
		}
		
		ls[i]=sk[ce[i]];
	}
	for(int i=0;i<=strlen(s+1);i++)
	{
		sk[i]=0;
	}
	
	for(int i=1;i<=strlen(s+1);i++)
	{
		if(s[i]=='&')
		{
			sk[ce[i]]=i;
		}
		
		la[i]=sk[ce[i]];
	}
	
	int tand=0,tor=0;
	
	printf("%d\n",work(1,strlen(s+1),tand,tor));
	
	printf("%d %d",tand,tor);
	
	return 0;
}

总结

题目本身不是很难,就是CSP这次的题面有点难懂,很啰嗦,导致很多人选择放弃。

T 4 T4 T4 [CSP-J 2022] 上升点列

题目描述

在一个二维平面内,给定 n n n 个整数点 ( x i , y i ) (x_i, y_i) (xi,yi),此外你还可以自由添加 k k k 个整数点。

你在自由添加 k k k 个点后,还需要从 n + k n + k n+k 个点中选出若干个整数点并组成一个序列,使得序列中任意相邻两点间的欧几里得距离恰好为 1 1 1 而且横坐标、纵坐标值均单调不减,即 x i + 1 − x i = 1 , y i + 1 = y i x_{i+1} - x_i = 1, y_{i+1} = y_i xi+1xi=1,yi+1=yi y i + 1 − y i = 1 , x i + 1 = x i y_{i+1} - y_i = 1, x_{i+1} = x_i yi+1yi=1,xi+1=xi。请给出满足条件的序列的最大长度。

输入格式

第一行两个正整数 n , k n, k n,k 分别表示给定的整点个数、可自由添加的整点个数。

接下来 n n n 行,第 i i i 行两个正整数 x i , y i x_i, y_i xi,yi 表示给定的第 i i i 个点的横纵坐标。

输出格式

输出一个整数表示满足要求的序列的最大长度。

样例 #1
样例输入 #1
8 2
3 1
3 2
3 3
3 6
1 2
2 2
5 5
5 3
样例输出 #1
8
样例 #2
样例输入 #2
4 100
10 10
15 25
20 20
30 30
样例输出 #2
103
提示

【数据范围】

保证对于所有数据满足: 1 ≤ n ≤ 500 1 \leq n \leq 500 1n500 0 ≤ k ≤ 100 0 \leq k \leq 100 0k100。对于所有给定的整点,其横纵坐标 1 ≤ x i , y i ≤ 10 9 1 \leq x_i, y_i \leq {10}^9 1xi,yi109,且保证所有给定的点互不重合。对于自由添加的整点,其横纵坐标不受限制。

测试点编号 n ≤ n \leq n k ≤ k \leq k x i , y i ≤ x_i,y_i \leq xi,yi
1 ∼ 2 1 \sim 2 12 10 10 10 0 0 0 10 10 10
3 ∼ 4 3 \sim 4 34 10 10 10 100 100 100 100 100 100
5 ∼ 7 5 \sim 7 57 500 500 500 0 0 0 100 100 100
8 ∼ 10 8 \sim 10 810 500 500 500 0 0 0 10 9 {10}^9 109
11 ∼ 15 11 \sim 15 1115 500 500 500 100 100 100 100 100 100
16 ∼ 20 16 \sim 20 1620 500 500 500 100 100 100 10 9 {10}^9 109

分析

用动态规划啊。
题目中的 “ 两点间的欧几里得距离恰好为 1 1 1 ” 就相当于点 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_{1},y_{1}),(x_{2},y_{2}) (x1,y1),(x2,y2) ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ = 1 \left | x_{1}-x_{2} \right |+\left | y_{1}-y_{2} \right |=1 x1x2+y1y2=1
那么我们就令 f [ i ] [ j ] f[i][j] f[i][j] 表示当前的第 i i i 个点添加了 j j j 个点后,最大的个数。再令 s = ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ + 1 s=\left | x_{1}-x_{2} \right |+\left | y_{1}-y_{2} \right |+1 s=x1x2+y1y2+1。则可得到状态转移方程: f [ i ] [ x + s ] = m a x ( f [ i ] [ x + s ] , f [ j ] [ x ] + s + 1 ) f[i]{[x+s]}=max(f[i]{[x+s}],f[j][x]+s+1) f[i][x+s]=max(f[i][x+s],f[j][x]+s+1)。且 f [ i ] [ 0 ] f[i][0] f[i][0] 是等于 1 1 1 的。

CODE

#include<bits/stdc++.h>

using namespace std;

struct aa{
	
	int x,y;
	
}a[10000000];
bool cmp(aa x,aa y)//排序使用
{
	if(x.x==y.x)
	{
		return x.y<y.y;
	}
	else
	{
		return x.x<y.x;
	}
}

int f[2000][2000];//状态转移数组

int n,k;

int main()
{
	cin>>n>>k;//输入
	for(int i=1;i<=n;i++)
	{
		cin>>a[i].x>>a[i].y;
	}
	
	sort(a+1,a+n+1,cmp);//从小到大排序
	
	int ans=0;
	for(int i=1;i<=n;i++)
	{
		f[i][0]=1;//初始值
		
		for(int j=1;j<i;j++)
		{
			if(a[i].y<a[j].y)
			{
				continue;
			}
			else
			{
				int s=a[i].x-a[j].x+a[i].y-a[j].y-1;
				
				for(int x=0;x<=k;x++)
				{
					if(x+s>k)//不满足要求
					{
						break;
					}
					
					f[i][x+s]=max(f[i][x+s],f[j][x]+s+1);//DP
					ans=max(ans,f[i][x + s]+k-x-s);//取最大
				}
			}
		}
	}
	
	cout<<ans;//输出答案
	
	return 0;
}

总结

就是一个普通的动态规划,只要我们能够考虑到 s s s,并且知道欧几里得距离是什么,就很简单了。

后序

关于这次的 C S P CSP CSP,我已经爆 0 0 0 了。我真的无言以对,我在考场上,究竟做了些什么?[大无语] [大无语] [大无语]

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
2022csp-j初赛试题是中国信息学奥林匹克竞赛初级组的试题,旨在检验参赛者在计算机科学与技术领域的基础知识和能力。本次试题共包括多个测试点,涵盖了计算机编程、算法设计、数据结构等多个方面的内容。 试题的难易程度适中,旨在考察参赛者对编程语言的熟练掌握程度以及对常见算法数据结构的理解和运用能力。试题涉及的内容包括但不限于语法分析、图论、动态规划、排序算法等。 参赛者需要在有限的时间内对试题进行理解、分析和解答,需要具备较高的代码编写能力和解决问题的能力。试题的解答过程需要遵循严谨的逻辑和清晰的表达,对于一些复杂的问题,需要提供相应的算法设计和证明过程。 2022csp-j初赛试题的设计合理,既考察了参赛者的知识水平,又注重了解决问题的能力。通过参与解答试题,参赛者能够提高编程能力和算法设计能力,培养自己的分析和解决问题的能力。 作为一项重要的计算机竞赛,2022csp-j初赛试题为广大计算机爱好者提供了展示自己的机会,也为计算机科学与技术的发展培养了人才。参与此项竞赛的学生可以锻炼自己的思维能力和动手能力,并且在实践中提高自己的编程水平。 总之,2022csp-j初赛试题是一项具有挑战性的计算机竞赛,旨在考察参赛者在计算机科学与技术领域的基础知识和能力。通过参与此项竞赛,参赛者可以提高编程和算法设计能力,培养解决问题的能力。这对于计算机科学与技术的发展和人才培养都具有积极的意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

harmis_yz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值