来自海外专家的深度解析 - AI到底会不会替代程序员?

今天小李哥将分享源自海外技术专家们对于目前热门话题:“AI会不会替代程序员”的深度分析,这些海外专家都是在国际互联网大厂深耕数十年的AI和开发领域的专业人士,他们的想法将对于我们未来的职业道路和技术学习的方向产生重大的影响,建议大家关注我,不要错过未来更多的前沿AI和技术动态。

GitHub Copilot和Cursor AI能帮我们自动生成代码和函数,ChatGPT调试代码的速度比我们自己搞更快。但当一名车间工人遇到应用程序在工业设备蓝牙连接时崩溃,AI也爱莫能助。我今天让我们到底看看,AI究竟有没有那么神奇,可以替代我们这帮程序员。

AI擅长的工作(可以替代初级开发者的工作)

首先我们一起来看看AI在代码领域究竟能替代什么,什么是AI所擅长的?

生成重复性的基础模板代码
AI可以自动化重复性任务,比如网络层HTTP请求调用等、CRUD基础代码段或SwiftUI封装库。比如下面这段代码

// AI writes a generic network call  
func fetch<T: Decodable>(_ endpoint: Endpoint) async throws -> T {  
    let (data, _) = try await URLSession.shared.data(from: endpoint.url)  
    return try JSONDecoder().decode(T.self, from: data)  
}

影响: AI会把基础模板代码的编写时间减少50%。

基础级调试排查Bug
AI可以自动扫描代码和里面的bug、漏洞。“为什么这个可选值是空变量?” → AI可以通过扫描立刻发现缺少的@Published@StateObject封装库

文档专家
AI能比Apple官方文档和百度、CSDN更清楚地解释代码语句、API定义,如Combine.flatMap(maxPublishers:)的用法。

AI完全搞不定的地方(我们程序员的护城河)

🚫 业务逻辑是什么?
AI不会理解我们代码中业务的逻辑,进而生成错误的代码逻辑。比如假如我们的应用用户是种地的农民,如:“我们需要本地缓存数据——我们的用户是网络信号不稳定的农场农民” → AI有可能完全忽略我们的代码逻辑上下文,只建议云端存储。

🚫 难以维护旧代码

AI在生成新版本代码的编程任务时表现不错,但面对遗留代码,它往往束手无策。想象一下,我们接手了一个iOS 8的老旧项目,里面都是Objective-C单例模式,代码风格混乱不堪,还有使用了C++ 桥接,与现代 Swift 交互困难重重。AI可能会直接建议:“删了重写吧(rm -rf)。” 🤦

🚫 难以复现的边缘场景

有些Bug和业务测试场景只有在特定时间、特定条件、特定用户行为下才会出现。让AI去生成复杂的复现测试用例,他们只能冷漠地输出日志:“无法复现。” 🤷 但程序员知道,这种场景可能和时区、缓存、后台任务或奇怪的用户行为有关(大家肯定深有体会),需要程序员的经验和直觉去排查。AI可以帮你分析日志,但真正的Debug过程,仍然离不开程序员的细致推理和实际测试!

🚫 跨系统、框架集成度高的软件架构

当一个应用涉及多种技术栈,比如SwiftUI视图调用Objective-C的某些SDK,然后通过React Native桥接处理GDPR数据合规,整个软件架构集成度特别高,任何改动都可能导致系统崩溃。AI可能会给我们四种完全矛盾的解决方案,却无法权衡哪种更适合当前的业务架构。真正的工程师不仅要理解每个技术栈,还要在兼容性、性能、合规性之间找到最优解,而这远非 AI 能解决的问题。

🚫 基于业务的技术栈选择

当产品经理提出 “我们应该用React Native重写这个项目”,理由只是“我喜欢React。” 作为开发团队,我们通常要和这种无脑PM解释技术的优劣、维护成本、迁移风险,而AI不会考虑团队的技术栈、代码历史和业务需求,它只会根据表面信息给出看似“可行”但完全不现实的答案。技术决策不能拍脑袋,需要经验和全局思维,这正是程序员不可替代的价值!

如何让自己不被AI取代?

1️⃣ 成为系统架构师(Systems Architect)

AI可以写代码,但架构设计需要你:

  • 容灾高可用的微服务架构
  • 对云基础设施进行成本优化
  • 凌晨3点去响应系统事故,并制定灾备计划

2️⃣ 掌握业务,而不是代码

理解为什么需要某个代码功能,然后再去用AI实施:

  • 比如“这个按钮可以提高用户留存率12%”,再用匹配到技术方案“这个按钮用SwiftUI实现”
  • AI只能专注于技术代码的实现,但是无法帮助我们完成业务中的KPI,KPI实现还得靠人

3️⃣ 拥有业务沟通能力

  • 利用AI代码审查:捕捉AI生成过程中的微小错误(比如异步代码中的竞争条件)。
  • 有领导能力:可以向初级开发者解释为什么使用某个技术栈对业务很重要。为什么某些架构设计可以提升可维护性?
  • 懂的业务沟通:可以良好的解释领导和产品经理提出的无脑问题,比如告诉他们:“不修复这个问题,我们可能会损失10%的营收” ,他们就会立刻重视。程序员不仅要写代码,还要能评估技术决策对业务产生影响,这正是AI无法完成的工作。

4️⃣ 学习利用AI赋能开发,而不是害怕它

  • 利用提示工程进行代码编写,最佳实践范例如下:

BAD: "Write a login screen."
GOOD: "Write a secure SwiftUI login flow with biometric auth,
error handling, and a 3rd-party OAuth SDK. Use Combine."

会被AI取代的具体职业

🚨 短期内会被取代的岗位

初级开发者:如果你的工作只是写简单的CRUD API。
QA工程师:如果你的测试工作只是执行手动的回归、模糊、功能测试。
技术文档写作者:如果你只负责写API参考文档。

✅ 未来会更吃香的岗位

高级/首席工程师(Staff/Principal Engineers):负责优化和调整AI生成的架构混乱代码、基础设施。
工程经理(Engineering Managers):有能力处理AI引入的和业务上的冲突。
初创公司CTO(Startup CTOs):做核心技术决策,决定“做什么”而不是“怎么做”,AI来完成执行实施部分。

最终结论

根据专家的建议总结:AI不会直接取代我们程序员,但会取代不会使用AI的开发者。我们的核心判断标准如下:如果我们的工作是“写代码”,那么你应该担心会被取代。但如果你的工作是“决定写什么代码”,那么我们根本不用担心被优化!

AI能自动化任务,但无法替代判断力。我们的核心价值不在于代码,而在于对业务和系统的理解。如果大家仍然焦虑?欢迎留言和关注小李哥,我们一起探讨如何在职场生涯中提升核心竞争力!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值