跳跃(动态规划)

题目描述

小蓝在一个 nn 行 mm 列的方格图中玩一个游戏。

开始时,小蓝站在方格图的左上角,即第 11 行第 11 列。

小蓝可以在方格图上走动,走动时,如果当前在第 rr 行第 cc 列,他不能走到行号比 rr 小的行,也不能走到列号比 cc 小的列。同时,他一步走的直线距离不超过 33。

例如,如果当前小蓝在第 33 行第 55 列,他下一步可以走到第 33 行第 66 列、第 33 行第 77 列、第 33 行第 88 列、第 44 行第 55 列、第 44 行第 66 列、第 44 行第 77 列、第 55 行第 55 列、第 55 行第 66 列、第 66 行第 55 列之一。

小蓝最终要走到第 nn 行第 mm 列。

在图中,有的位置有奖励,走上去即可获得,有的位置有惩罚,走上去就要接受惩罚。奖励和惩罚最终抽象成一个权值,奖励为正,惩罚为负。

小蓝希望,从第 11 行第 11 列走到第 nn 行第 mm 列后,总的权值和最大。请问最大是多少?

输入描述

输入的第一行包含两个整数 n, mn,m,表示图的大小。

接下来 nn 行,每行 mm 个整数,表示方格图中每个点的权值。

其中,1 \leq n \leq 100,-10^4 \leq 权值 \leq 10^41≤n≤100,−104≤权值≤104。

输出描述

输出一个整数,表示最大权值和。

输入输出样例

示例 1

输入

3 5
-4 -5 -10 -3 1
7 5 -9 3 -10
10 -2 6 -10 -4

输出

15

运行限制

  • 最大运行时间:1s
  • 最大运行内存: 128M
    #include<bits/stdc++.h>
    using namespace std;
    int x[9]={-1,-2,-3,0,0,0,-1,-2,-1};
    int y[9]={0,0,0,-1,-2,-3,-1,-1,-2};
    
    int main(){
    	int n,m;
    	cin>>n>>m;
    	int a[n][m];
    	for(int i=0;i<n;i++){
    		for(int j=0;j<m;j++){
    			cin>>a[i][j];
    		}
    	}
    	int dt[n][m];
    	dt[0][0]=a[0][0];
    	for(int i=0;i<n;i++){
    		for(int j=0;j<m;j++){
    			int ans=-10000;
    			int flag=0;
    			for(int k=0;k<9;k++){
    				if(i+x[k]>=0&&j+y[k]>=0){
    					flag=1;
    					int c=i+x[k];
    					int d=j+y[k];
    					ans=max(dt[c][d],ans);
    				}
    			}
    			if(flag)
    				dt[i][j]=a[i][j]+ans;
    		}
    	}
    	cout<<dt[n-1][m-1]<<endl;
    	return 0;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值