【题目描述】
设S是一个具有n个元素的集合,S=〈a1,a2,……,an〉
,现将S划分成k个满足下列条件的子集合S1,S2,……,Sk
,且满足:
1.Si≠∅
2.Si∩Sj=∅
(1≤i,j≤k,i≠j
)
3.S1∪S2∪S3∪…∪Sk=S
则称S1,S2,……,Sk
是集合S的一个划分。它相当于把S集合中的n个元素a1,a2,……,an 放入k个(0<k≤n<30)无标号的盒子中,使得没有一个盒子为空。请你确定n个元素a1,a2,……,an 放入k个无标号盒子中去的划分数S(n,k)
。
【输入】
给出n
和k
。
【输出】
n
个元素a1,a2,……,an 放入k个无标号盒子中去的划分数S(n,k)
。
【输入样例】
10 6
【输出样例】
22827
#if(1)
#include <iostream>
#define A 1000000+5
using namespace std;
int i,j;
//int a[A]={0,1,2};
long long S(int ,int);
int main()
{
int n,k;
cin>>n>>k;
cout<<S(n,k)<<endl;
return 0;
}
long long S(int n,int k)
{
if(k==0||n<k)return 0;
if(k==1||k==n)return 1;
return S(n-1,k-1)+k*S(n-1,k);
}
#endif
哦,对了,三连必回哦