LeetCode 968. 监控二叉树***(double,triple)

具体思路:

想到了从下向上保留状态,但是没想到是三状态;

感觉是见过树状态遍历见过最难的题了;

这里一定要注意,每个节点有三个状态:

  1. 根结点覆盖,整棵树所需要的最小监视器个数;
  2. 根结点可以不覆盖,整棵树所需要的最小监视器个数;
  3. 保证左右子树全覆盖,根结点覆盖与否都可以;

此时,后续遍历,某个节点必定会收到l1,l2,l3和r1,r2,r3;

此时进行本届节点的三个状态计算;

  1. 第一种情况根节点覆盖,左右子树的根节点就没必要覆盖了,所以为l3+r3+1;
  2. 第二种情况根节点不覆盖,要么左子树根节点覆盖,要么右子树根节点覆盖,要么是第一种情况,所以三者取最小;
  3. 第三种情况左右子树要求全覆盖,只需要l2+r2即可;

具体代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
 //a 根结点覆盖下,整棵树所需要的最小监视器
 //b 根结点覆盖不覆盖都行,整棵树所需要的最小监视器树;
 //c 覆盖左右子树,跟节点腹部覆盖都可以;
class Solution {
public:
    int minCameraCover(TreeNode* root) {
        auto vec=dfs(root);
        return vec[1];
    }

    vector<int> dfs(TreeNode* root){
        if(!root){
            return {INT_MAX/2,0,0};
        }
        vector<int> left=dfs(root->left);
        vector<int> right=dfs(root->right);
        int a=1+left[2]+right[2];//跟节点如果覆盖,则左右节点不用覆盖,覆盖他们的子节点即可;
        int b=min(a,min(left[0]+right[1],right[0]+left[1]));
        int c=min(a,left[1]+right[1]);
        return {a,b,c};
    }
};```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值