04 区间类动态规划(下)

本文详细介绍了区间动态规划的概念,并通过两个实例——石子合并(提高版)和能量项链——来阐述其应用。文章讨论了如何求解这类问题的最优解,包括动态规划的状态定义、转移方程以及时间复杂度分析,并提供了相应的代码实现。
摘要由CSDN通过智能技术生成

蒟蒻说一句: 建议先看完(上)再看(下)

       区间型动态规划是线性动态规划的拓展,它在分阶段地划分问题时,与阶段中元素出现的顺序和由前一阶段的区间中哪些元素合并而来有很大的关系。
       如对于状态f[i][j],它表示划分的阶段为j,状态出现的位置为i,它的值取决于第i个元素出现的位置和i到j这段区间的值。这一类型的动态规划,阶段特征非常明显,求最优值时需预先设置阶段内的区间统计值,还要分动态规划的起始位置来判断。区间型动态规划的典型应用有石子合并、矩阵乘积等。

【例3】石子合并(提高版)

Description
在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分。
Input
输入数据的第1行试正整数N,1≤N≤1000,表示有N堆石子.第2行有N个数,分别表示每堆石
子的个数。
Output
输出共2行,第1行为最小得分,第2行为最大得分.
Sample Input
4
4 4 5 9
Sample Output
43
54

【问题分析】
我们可以将这条链延长2倍,扩展成2n-1堆,其中第1堆与n+1堆完全相同,第i堆与n+i堆
完全相同,这样我们只要对这2n堆动态规划后,枚举f(1,n),f(2,n+1),…,f(n,2n-1)取最优值即
可即可。时间复杂度为O(8n3),如下图:
采用循环队列的形式,见下图:

 【代码实现】

void init()
{
	cin>>n;
	for(i=1; i<=n; i++)
	{
		cin>>a[i];
		a[i+n]=a[i];
	}
	for(i=1; i<=n*2; i++)
	{
		sum[i]=sum[i-1]+a[i];
		f2[i][i]=0;
		f1[i][i]=0;
	}
}
void dp()
{
	int j,k,L,ans;
	for(L=2; L<=n; L++) //以合并的堆数为阶段
		for(i=1; i<=2*n-L+1; i++) //合并的起始位置
		{
			j=i+L-1; //合并的结束位置
			f1[i][j]=0x7fffffff/2;
			f2[i][j]=0;
			for(k=i; k<j; k++)
			{
				f1[i][j]=min(f1[i][j],f1[i][k]+f1[k+1][j]);
				f2[i][j]=max(f2[i][j],f2[i][k]+f2[k+1][j]);
			}
			f1[i][j]+=sum[j]-sum[i-1];
			f2[i][j]+=sum[j]-sum[i-1];
		}
	ans1=0x7fffffff/2,ans2=0;
	for(i=1; i<=n; i++)ans1=min(ans1,f1[i][i+n-1]);
	for(i=1; i<=n; i++)ans2=max(ans2,f2[i][i+n-1]);
}

【例4】能量项链 

Description
在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标记为m,尾标记为n。
需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。
我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:
    (4⊕1)=10*2*3=60。
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为
    ((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。
Input
输入文件的第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。
第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当1≤i<N时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。
至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。
Output
输出文件只有一行,是一个正整数E(E≤2.1*10^9),为一个最优聚合顺序所释放的总能
量。
Sample Input
4
2 3 5 10
Sample Output
710

【思路点拨】
简单地说,题意为:给你一串项链,项链上有n颗珠子,相邻的两颗珠子可以合并(两个合并成一个),合并的同时会放出一定的能量。不同珠子的合并所释放的能量是不同的。问:按照怎样的次序合并才能使释放的能量最多?
我们用head[i]表示第i颗珠子的头标记,用tail[i]表示第i颗珠子的尾标记,合并两颗相邻珠子所释放的能量为:head[i]*tail[i]*tail[i+1]
合并时不一定按照输入的顺序合并,与石子合并问题类似,第n次合并,可以归结到第n-1次合并,具有明显的动态规划性质。
设f[i][j]表示从第i颗珠子合并到第j颗珠子时产生的最大能量。假设最后合并的位置为k和k+1,则有:
    f[i][j]=max{f[i][k]+f[k+1][j]+head[i]*tail[k]*tail[j]},1<=i<=k<j<=n
    初始化:f[i][i]=0;
    Answer=max{f[1][n],f[2][n+1]….+f[n][2n-1]}
    时间复杂度为:O(8n3)。

【代码实现】

int head[205],tail[205],f[205][205]= {0},ans=0,n,i,t,j,k;
cin>>n;
for(i=1; i<=n; i++)
{
	cin>>head[i];    //环变成链
	head[i+n]=head[i];
}
for(i=1; i<=2*n-1; i++)tail[i]=head[i+1];
tail[2*n]=head[1];//求尾标记
for(i=1; i<=2*n-1; i++)f[i][i]=0; //初始化
for(t=1; t<=n-1; t++) //阶段:合并次数
	for(i=1; i<=2*n-t; i++) //状态:起始位置
	{
		j=i+t; //计算结束位置
		for(k=i; k<=j-1; k++) //决策
			f[i][j]=max(f[i][j],f[i][k]+f[k+1][j]+head[i]*tail[k]*tail[j]);
	}
for(i=1; i<=n; i++)ans=max(ans,f[i][i+n-1]); //枚举断开的位置,求最值
cout<<ans<<endl;
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
动态规划是一种常用的算法思想,它通常用于解决一些最优化问题。在动态规划中,我们通常需要定义状态和状态转移方程。对于区间型的动态规划问题,我们可以使用 interval 这个 Python 库来方便地进行区间操作。 下面是一个使用 interval 库进行区间动态规划的例子: 假设我们有一个长度为 n 的数组 nums,我们需要找到一个区间 [i,j],使得这个区间内的元素和最大。我们可以定义状态 dp[i] 表示以第 i 个元素结尾的最大子区间和,状态转移方程为 dp[i] = max(dp[i-1]+nums[i], nums[i])。最终的答案即为 max(dp)。 ```python from interval import Interval def maxSubArray(nums): n = len(nums) dp = [0] * n dp[0] = nums[0] for i in range(1, n): dp[i] = max(dp[i-1]+nums[i], nums[i]) return max(dp) nums = [-2,1,-3,4,-1,2,1,-5,4] intervals = [Interval(i, i+1) for i in range(len(nums))] max_sum = maxSubArray(nums) max_interval = max(intervals, key=lambda x: sum(nums[x.lower:x.upper])) print("最大子区间和为:", max_sum) print("最大子区间为:", max_interval) ``` 上述代码中,我们首先定义了一个长度为 n 的数组 nums,然后使用 interval 库创建了一个区间列表 intervals,其中每个区间的左端点和右端点都是相邻的两个整数。接着,我们定义了一个函数 maxSubArray,用于计算最大子区间和。在函数中,我们使用动态规划的思想,定义了状态 dp[i] 表示以第 i 个元素结尾的最大子区间和,然后使用状态转移方程 dp[i] = max(dp[i-1]+nums[i], nums[i]) 计算出所有状态的值。最后,我们返回 dp 中的最大值作为最大子区间和。 在计算出最大子区间和之后,我们使用 max 函数和 lambda 表达式找到了一个使得区间内元素和最大的区间,并将其赋值给了变量 max_interval。最终,我们输出了最大子区间和和最大子区间
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值