conda创建虚拟环境并安装GPU版torch全过程(cuda11.8+py3.10+torch2.4.1+torchvision0.19.0)

目录

1. 创建虚拟环境

2. 安装pytorch

2.1 查找对应版本

2.2 安装pytorch

2.3 测试是否安装成功

3. 安装torchvision

3.1 查找对应版本

3.2 安装torchvision

3.3 测试是否安装成功

4. Others

4.1 安装numpy报错

4.2 安装timm报错

1. 创建虚拟环境
conda create -n env_name -y

## 指定python版本
conda create -n env_name python=3.10 -y

## 查看已安装环境
conda env list
conda info --envs

## 激活某个环境
conda activate env_name

## 退出
conda deactivate

## 重命名
conda rename -n old_name new_name

## 克隆环境
conda create --name new_env_name --clone old_env_name 
# new_env_name 为新环境的名称
# old_env_name 为被克隆的环境名称

## 删除
conda remove -n env_name --all -y
conda env remove --name env_name -y

参考:conda常用命令之–虚拟环境管理(教你如何创建、激活、重命名、删除虚拟环境)_conda创建环境命令-CSDN博客

2. 安装pytorch

PyTorch

以下为手动安装过程

2.1 查找对应版本
nvcc --version

cuda版本为11.8,python版本3.10

点击download.pytorch.org/whl/torch查找cu118,找到cp310,直接下载torch

(Mob) C:\Users\23688>pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124 Looking in indexes: https://download.pytorch.org/whl/cu124 Requirement already satisfied: torch in e:\anaconda3\envs\mob\lib\site-packages (2.4.1+cu124) Requirement already satisfied: torchvision in e:\anaconda3\envs\mob\lib\site-packages (0.19.1+cu124) Requirement already satisfied: torchaudio in e:\anaconda3\envs\mob\lib\site-packages (2.4.1+cu124) Requirement already satisfied: filelock in e:\anaconda3\envs\mob\lib\site-packages (from torch) (3.13.1) Requirement already satisfied: typing-extensions>=4.8.0 in e:\anaconda3\envs\mob\lib\site-packages (from torch) (4.12.2) Requirement already satisfied: sympy in e:\anaconda3\envs\mob\lib\site-packages (from torch) (1.13.1) Requirement already satisfied: networkx in e:\anaconda3\envs\mob\lib\site-packages (from torch) (3.1) Requirement already satisfied: jinja2 in e:\anaconda3\envs\mob\lib\site-packages (from torch) (3.1.4) Requirement already satisfied: fsspec in e:\anaconda3\envs\mob\lib\site-packages (from torch) (2024.6.1) Requirement already satisfied: numpy in e:\anaconda3\envs\mob\lib\site-packages (from torchvision) (1.24.4) Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in e:\anaconda3\envs\mob\lib\site-packages (from torchvision) (10.0.0) Requirement already satisfied: MarkupSafe>=2.0 in e:\anaconda3\envs\mob\lib\site-packages (from jinja2->torch) (2.1.5) Requirement already satisfied: mpmath<1.4,>=1.1.0 in e:\anaconda3\envs\mob\lib\site-packages (from sympy->torch) (1.3.0)
最新发布
03-14
<think>好的,用户想知道如何检查已安装PyTorch及其相关库的本和依赖项。首先,我需要回忆一下PyTorch常用的本检查方法。通常,可以通过Python代码导入库打印__version__属性来获取本信息。比如,torch.__version__会返回PyTorch本。同样,torchvisiontorchaudio也可以用同样的方法。 接下来,用户可能还想知道依赖项的本。这时候,可能需要用到包管理工具,比如pip或者conda。如果用pip安装的话,可以用pip show命令来查看详细信息,包括依赖项。对于conda用户,conda list可以列出所有已安装的包及其本,但可能不会详细显示每个包的依赖关系。不过,有时候依赖项可能需要手动检查,或者使用像pipdeptree这样的工具来生成依赖树。 另外,用户可能有不同的安装方式,比如通过conda或者pip,需要分别说明。比如,使用conda list pytorch会显示PyTorch及其相关包的本。同时,需要提醒用户注意CUDA本的兼容性,因为PyTorch的不同本可能对应不同的CUDA本,这可以通过torch.version.cuda来查看。 还需要考虑用户可能的操作系统和环境差异,比如在Linux、Windows或Mac上的命令是否一致。Python代码的方法应该是跨平台的,而命令行指令可能会有细微差别,比如conda和pip的通用性。 另外,用户提到“依赖项”,可能不仅指PyTorch的直接依赖,还可能包括间接依赖。这时候可能需要更详细的包管理命令,或者建议使用第三方工具来可视化依赖关系。例如,pipdeptree可以帮助用户查看完整的依赖树,但需要先安装这个工具。 最后,需要确保提供的步骤清晰易懂,分点说明,让用户能够一步步操作。同时,引用相关的资料,比如PyTorch官方文档,来增强可信度。可能需要检查是否有遗漏的情况,比如用户是否安装了CPU-only本,这时候CUDA本会显示为None,需要特别说明。 总结一下,回答需要包括以下几个部分: 1. 使用Python代码检查PyTorchtorchvisiontorchaudio的本。 2. 使用命令行工具(pip或conda)查看已安装的包及其本。 3. 检查CUDA本是否与PyTorch兼容。 4. 查看依赖项的方法,包括直接使用包管理命令或第三方工具。 5. 引用官方文档或资源,供用户进一步参考。 需要确保每个步骤的准确性,避免命令错误,且考虑到不同用户的环境差异,提供多种方法供选择。同时,语言要简洁明了,符合中文表达习惯,不使用专业术语过多,必要时进行解释。</think>### 检查已安装PyTorch及相关库本的方法 #### 1. 使用Python代码直接查看本 在Python环境中运行以下代码,可获取核心库的本信息: ```python import torch import torchvision import torchaudio print(f"PyTorch本: {torch.__version__}") # 输出PyTorch本,例如2.4.0 print(f"CUDA可用性: {torch.cuda.is_available()}") # 检查CUDA是否启用 print(f"CUDA本: {torch.version.cuda}") # 显示CUDA工具包本(如11.8) print(f"Torchvision本: {torchvision.__version__}") # 输出torchvision本 print(f"Torchaudio本: {torchaudio.__version__}") # 输出torchaudio本 ``` #### 2. 通过命令行工具查询 根据安装方式选择对应命令: - **Conda安装**: ```bash conda list | grep "pytorch\|torchvision\|torchaudio" ``` - **pip安装**: ```bash pip show torch torchvision torchaudio ``` #### 3. 依赖关系检查 - **直接依赖**:使用`pipdeptree`生成依赖树(需先安装`pip install pipdeptree`): ```bash pipdeptree --packages torch,torchvision,torchaudio ``` - **Conda依赖**: ```bash conda info pytorch ``` #### 4. 环境验证示例 正常输出应类似: ``` PyTorch本: 2.4.0 CUDA可用性: True CUDA本: 11.8 Torchvision本: 0.19.0 Torchaudio本: 2.4.0 ``` #### 本对应关系 PyTorchCUDA本需严格匹配,例如: - `pytorch==2.4.0`对应`pytorch-cuda=11.8/12.1/12.4`[^1] - `torchvision==0.19.0`和`torchaudio==2.4.0`为官方推荐组合
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值