
数据可视化
文章平均质量分 96
布说在见
砥砺前行 不负韶华。 请勿转载,谢谢
展开
-
Python 绘图工具详解:使用 Matplotlib、Seaborn 和 Pyecharts 绘制散点图
有时候,Jupyter Notebook中的其他输出可能会干扰图表的显示。如果以上方法都不奏效,可以尝试重启Jupyter Notebook服务器,有时这可以解决一些临时性的问题。如果你在Jupyter Notebook中运行这段代码,但是图表没有显示出来,可能是因为。方法不起作用,可以尝试将图表保存为HTML文件,然后手动打开这个文件查看图表。如果你希望在Jupyter Notebook中直接显示HTML文件,可以使用。通常情况下,较新版本的Jupyter Notebook应该没有问题。原创 2024-11-14 09:30:44 · 9079 阅读 · 108 评论 -
双 11 数据可视化:Pyecharts 与 Matplotlib 绘制商品价格对比及动态饼图
数据可视化的相关内容,包括掌握可视化交互、进行数据可视化评估和了解其价值。同时,通过商品价格对比展示了 Pyecharts 和 Matplotlib 库的柱形图绘制方法,并分别讲解了静态和动态饼图的绘制,特别是在 Matplotlib 中设置中文显示及 Pyecharts 动态饼图的复杂实现,为数据可视化提供了丰富的参考和实用的示例。原创 2024-11-11 09:21:34 · 1863 阅读 · 96 评论 -
魅力标签云,奇幻词云图 —— 数据可视化新境界
向前冲!!!关键词可视化主要分为两大类:标签云和文档散。标签云通过汇总生成的独立词汇来展示关键词,而文档散则利用词汇库中的结构关系布局关键词,采用具有上下语义关系的词语来展示。原创 2024-11-07 11:55:45 · 2154 阅读 · 82 评论 -
层次与网络的视觉对话:树图与力引导布局的双剑合璧
新的一天开始了,希望我们今天充满活力和灵感!无论是继续进行数据可视化的实验,还是有其他的工作和学习计划,愿这一天都能带给我们新的收获和进步。原创 2024-11-04 08:49:52 · 1452 阅读 · 89 评论 -
数据分析可视化:散点图矩阵与雷达图的生成
通过上述代码,可以生成一个散点图矩阵和一个雷达图,分别用于展示经营数据的不同方面。这些图表不仅可以帮助你更好地理解数据,还可以用于报告和展示,提高数据分析的可视化效果。确保在运行代码前检查文件路径和数据格式,以避免潜在的错误。原创 2024-11-01 09:24:41 · 3449 阅读 · 95 评论 -
地球上的中国:世界地图概览
data = [('黑龙江省',15),('新疆维吾尔自治区',25),('河南省',35),('湖北省',40)]c =(Map()TitleOpts(title="中国地图"),),通过不同的可视化手段,能够清晰地识别出数据中的模式、趋势和异常值。如果对你有帮助,不忘三连哦。原创 2024-10-29 08:48:16 · 1898 阅读 · 94 评论 -
洞察数据之美:用可视化探索销售与温度的关系
哇哦!库一定要提前下载哦!可以用国内的镜像源来下载库呢!加油,慢慢学,你一定可以的!原创 2024-10-25 11:47:38 · 1966 阅读 · 93 评论 -
从零开始:Python与Jupyter Notebook中的数据可视化之旅
mean_values[‘花萼长度’].plot(kind=‘bar’) 用于绘制条形图,显示不同品种鸢尾花的平均花萼长度。使用 plt.scatter() 绘制花萼长度与花萼宽度的关系,并根据鸢尾花品种(iris.target)进行颜色映射。cmap=‘viridis’ 用来指定颜色图,plt.colorbar() 添加颜色图例,显示各个颜色对应的品种。散点图提供了特征之间的相关性和品种的分布信息,有助于发现不同品种的分布模式。这种整体的流程不仅提升了可视化的质量,也为用户提供了高效的分析工具。原创 2024-10-22 23:12:06 · 3245 阅读 · 43 评论