题目概述
题目描述
儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N 块巧克力,其中第i块是 HxWi的方格组成的长方形。为了公平起见,
小明需要从这 N 块巧克力中切出 K块巧克力分给小朋友们。切出的巧克力需要满足:
1.形状是正方形,边长是整数:
2.大小相同,
例如一块 6x5 的巧克力可以切出 6 块 2x2 的巧克力或者 2 块 3x3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入描述
第一行包含两个整数 N,K(1≤ N,K≤ 10')。
以下 N 行每行包含两个整数 Hi,W;(1 <Hi, Wi< 10')。
输入保证每位小朋友至少能获得一块 1x1 的巧克力。
输出描述
输出切出的正方形巧克力最大可能的边长。
输入输出样例
示例
输入
2 10
6 5
5 6
输出
2
#include <iostream>
using namespace std;
const int def=100005;
int h[def]={0};
int w[def]={0};
int n,k;
//求巧克力的块数--除法
bool check(int x)//边长为x的正方形
{
int sum=0;
for(int i=0;i<n;i++)
{
sum+=(h[i]/x)*(w[i]/x);
}
if(sum>=k)return true;
else
return false;
}
int main()
{
// 请在此输入您的代码
cin>>n>>k;
for(int i=0;i<n;i++)
{
cin>>h[i]>>w[i];
}
//二分法判断边长
int l=1;
int r=100000;
int max=0;
while(l<=r)//注意判断条件包括=
{
int mid=(l+r)/2;
if(check(mid))//mid边长是满足的
{
max=mid;
l=mid+1;//要求最大边长,还需要继续判断
}
else
r=mid-1;//说明不满足,需要缩减边长
}
cout<<max;
return 0;
}
题目先定义一个检测边长是否可行的函数,再使用二分法逐一检测,最终找到最大边长。