1. 问题描述:
在一个 8×8 的国际象棋棋盘上放置着一个车和一个马。保证这两个棋子之间不能攻击到对方。现在,要在棋盘的空格上放置另一个马,要求放置完毕后,三个棋子两两之间不得攻击到对方。请问,共有多少种放置方法。关于国际象棋行棋规则:
车:横、竖均可以走,步数不受限制,不能斜走。
马:每步棋先横走或竖走一格,然后再往外斜走一格;或者先斜走一格,最后再往外横走或竖走一格(即走"日"字)。可以越子,没有中国象棋中的"蹩马腿"限制。
关于棋盘:8 行从上到下依次编号为 1~8,8 列从左到右依次编号为 a~h,其中的具体方格可用字母加数字来描述,如下图所示。
输入格式
第一行包含一个小写字母(a~h)和一个数字(1~8),表示车的位置。第二行包含一个小写字母(a~h)和一个数字(1~8),表示马的位置。
输出格式
一个整数,表示第二个马的放置方法数量。
数据范围
所有测试点满足,输入车和马不在同一位置,且不会攻击到对方。
输入样例1:
a1
b2
输出样例1:
44
输入样例2:
a8
d4
输出样例2:
38
来源:https://www.acwing.com/problem/content/description/4074/
2. 思路分析:
因为是8 * 8的棋盘所以我们可以枚举每一个位置判断当前位置是否可以放,如果可以放那么方案数目加1。
3. 代码如下:
class Solution:
# 判断当前的马是否可以攻击到车或者是马
def check(self, a: int, b: int, c: int, d: int):
x, y = abs(a - c), abs(b - d)
return (x == 1 and y == 2) or (x == 2 and y == 1)
def process(self):
s1, s2 = input(), input()
# a, b是车的位置
a = ord(s1[0]) - ord("a")
b = int(s1[1]) - 1
# c, d是马的位置
c = ord(s2[0]) - ord("a")
d = int(s2[1]) - 1
res = 0
for i in range(8):
for j in range(8):
# 与车或者马的位置重合了
if (i == a and j == b) or (i == c and j == d): continue
# 放置的马被车攻击到
if i == a or j == b: continue
# 判断放置的马是否可以攻击到车或者是马
if self.check(i, j, a, b) or self.check(i, j, c, d): continue
res += 1
return res
if __name__ == '__main__':
print(Solution().process())