目录
一、python快的解析Protobuf方式
注意:目录二、三、四、五可以作为了解,实际上目录一就可以解决了,比后面的解决方式更便捷,后面介绍的解决方式的前提是还原.proto文件。如果解决不了的话,再看二、三、四、五也可
- 1、问题案例:请求参数和响应参数都是序列化的数据结构,不易读。两个名词
序列化
(将正常可读数据转为protobuf的数据结构,看似是乱码的形式),非序列化
反之
- 2、解决方案:
-
依赖安装:
pip install blackboxprotobuf
-
如果要将数据转为序列化数据,则需先确认
message_type
(Type information including field number, field name and field type),如何确认message_type,我们可以将非序列化的数据复制下来,如下赋值给a变量,然后可以得到消息类型message_type;如果下面代码无法运行,a变量的这个数据换成你自己的import blackboxprotobuf a = "?2???2?? ·??".encode() deserialize_data , message_type =blackboxprotobuf.protobuf_to_json(a) print(deserialize_data ) # 非序列化的原始数据 print(message_type) # 消息类型结构
-
将数据
序列化
样例如下,有了消息类型message_type,我们就可以将数据转为序列化数据了,如下import blackboxprotobuf message_type = {'1': {'type': 'int', 'name': ''}, '2': {'type': 'int', 'name': ''}, '3': {'type': 'int', 'name': ''}, '4': {'type': 'int', 'name': ''}} before_data = {'1': 1, '2': 312312312442, '3': 8709708978, '4': 78971987} form_data = blackboxprotobuf.encode_message(before_data, message_type) print(form_data)
-
将数据
非序列化
样例如下,直接传入字节content,即可输出jsonimport blackboxprotobuf content = b'??)?) ?(?#0?(8?"@tBHò:Pí' print(blackboxprotobuf.protobuf_to_json(content)) # ('{ "1": "3231", "2": "5308", "3": "5289", "4": "3231", "5": "4486", "6": "5191", "7": "4385", "8": "8574", "9": "7506", "10": "461" }', {'1': {'type': 'int', 'name': ''}, '2': {'type': 'int', 'name': ''}, '3': {'type': 'int', 'name': ''}, '4': {'type': 'int', 'name': ''}, '5': {'type': 'int', 'name': ''}, '6': {'type': 'int', 'name': ''}, '7': {'type': 'int', 'name': ''}, '8': {'type': 'int', 'name': ''}, '9': {'type': 'int', 'name': ''}, '10': {'type': 'int', 'name': ''}})
-
最终解决如下:
-
二、什么是Protobuf
-
1、protocol buffers介绍:是一种语言无关、平台无关、可扩展的序列化结构数据的方法。严格说不算是加密,
只能是叫序列化结构数据,让可读变为疑似的乱码,那反序列化即让疑似的乱码变为可读
-
2、protobuf使用流程的
前提是有一个.proto文件
,对逆向而言就是还原.proto文件
,选择编译成相应的编程语言包,然后调用包进行序列化和反序列化- 比如编程语言选择python,则我们会将
.proto文件
先编译成python要用的python模块包
(与requests等包类似) - 接着就是
用python调用已编译的模块包进行数据的序列化和反序列化
- 比如编程语言选择python,则我们会将
-
3、一个网站应用了Protobuf实例
- 如下图不管是请求参数还是响应参数,都返回了序列化的数据,虽然看似是乱码,实际上只是用Protobuf将原始数据进行了序列化,变得不可读了,我们将
响应内容保存为test.bin文件
- 当然有的会直接在headers头指明媒体类型
content-type: application/grpc-web+proto
,也可通过此类方法判断
- 执行cmd命令
protoc --decode_raw < test.bin
(执行该命令,需下载解压protoc-3.19.1-win64.zip并添加bin目录为环境变量),如图结果已还原,和网站上的数据一致
- 如下图不管是请求参数还是响应参数,都返回了序列化的数据,虽然看似是乱码,实际上只是用Protobuf将原始数据进行了序列化,变得不可读了,我们将
三、Protobuf环境配置
- 1、点击链接下载protobuf,如图下载
protobuf-python-3.19.1.zip
和protoc-3.19.1-win64.zip
- 2、
protoc编译器安装
- ① 解压protoc-3.19.1-win64.zip压缩包,并将该文件夹的bin目录D:Softwareprotoc-3.19.1-win64in添加到环境变量
- ② 打开cmd输入
protoc --version
显示出版本号,则代表protoc编译器安装成功
- ① 解压protoc-3.19.1-win64.zip压缩包,并将该文件夹的bin目录D:Softwareprotoc-3.19.1-win64in添加到环境变量
- 3、
python依赖protoc模块安装
- ① 解压protobuf-python-3.19.1.zip压缩包,然后切换到D:Softwareprotobuf-3.19.1python目录下,打开cmd,执行如下两条命令:
python setup.py build
和python setup.py install
- ② 打开python解释器,导入
import google.protobuf
可以检测protobuf模块是否安装成功,未报错即成功
- ① 解压protobuf-python-3.19.1.zip压缩包,然后切换到D:Softwareprotobuf-3.19.1python目录下,打开cmd,执行如下两条命令:
- 4、
vscode安装vscode-proto3插件
,可以选择性安装,只是为了打开.proto文件
好看点
- 5、如果报错
AttributeError: 'NoneType' object has no attribute 'message_types_by_name'
,解决方法pip install --upgrade protobuf
四、Protobuf实例序列化与反序列化
-
如要传输的数据格式类似如下,然后我们用proto3语法写一个.proto文件
{ "name": "shirmay", "id": 11, "mail": "21421312.@qq.com" { "telnumber": "133110120**", "type": 2 } }
-
Protobuf实例序列化与实例化的流程图介绍
,新建>编译>序列化(输出内容不可读)>反序列化(输出内容可读)
Created with Raphal 2.3.0 1、新建yrx_example.proto文件 2.0、编译yrx_example.proto文件:执行下面cmd命令生成yrx_example_pb2.py文件 2.1、cmd命令编译文件:protoc -–python_out=. yrx_example.proto 3、python代码生成序列化文件:yrx_example_person.bin文件 4.0、python代码反序列化解析文件:将yrx_example_person.bin文件输出原始的可读结果 4.1、或者cmd命令输出.bin文件可读结果:protoc --decode_raw < yrx_example_person.bin 5、逆向还原.proto文件:已知bin文件执行如上cmd命令,根据反序列化结果过可逆向还原出yrx_example.proto文件
-
①
新建yrx_example.proto文件
:按上数据格式用proto3语法新建yrx_example.proto文件,内容如下:如下数据有message消息类型,enum枚举类型, string字符串类型,int32整型;在消息定义中,每个字段都有唯一的一个数字标识符,也就是下面当中的1,2,3
syntax = "proto3"; // 指定使用proto3的语法, 在一个.proto文件中可以定义多个message消息类型 message Person { string name = 1; // string类型 :姓名, 标识符1 int32 id = 2; // 整型 :id, 标识符2 string email = 3; // string类型 :邮箱, 标识符3 message PhoneNumber { string telnumber = 1; // 电话号码 // enum枚举类型,自定义一个PhoneType类型,每个枚举类型必须将其第一个类型映射为0(必须有有一个0值,我们可以用这个0值作为默认值) enum PhoneType { MOBILE = 0; // 手机电话类 HOME = 1; // 家庭电话类 WORK = 2; // 工作电话类 } PhoneType type = 2; } repeated PhoneNumber phones = 4; // 将其他消息类型如PhoneNumber当作字段类型,如Person消息中包含PhoneNumber消息 } message AddressBook{ repeated Person person = 1; // 将其他消息类型如Person当作字段类型,如希望AddressBook消息中包含Person消息 }
-
②
编译yrx_example.proto文件
:在cmd里面输入protoc -–python_out=. yrx_example.proto
,此时会在当前目录下生成yrx_example_pb2.py
文件
-
③
python代码序列化yrx_example.proto文件
,并将序列化内容存到yrx_example_person.bin
文件中,此时数据完全不可读即看不懂import yrx_example_pb2 address_book = yrx_example_pb2.AddressBook() person = address_book.person.add() person.id = 11 person.name = "shirmay" person.email = "110120119.@qq.com" phone = person.phones.add() phone.telnumber = "133110120**" phone.type = 2 with open("yrx_example_person.bin", "wb") as f: print(address_book.SerializeToString()) # b' / shirmay110120119.@qq.com" 133110120**' f.write(address_book.SerializeToString())
-
③
python代码反序列化yrx_example_person.bin文件
,还原为可读数据import yrx_example_pb2 def list_people(addr_book): for person in addr_book.person: print(f"id: {person.id}") print(f"name: {person.name}") print(f"email: {person.email}") for num in person.phones: print(f"phone_num: {num.telnumber}") print(f"phone type: {num.type}") address_book = yrx_example_pb2.AddressBook() with open("yrx_example_person.bin", "rb") as f: address_book.ParseFromString(f.read()) list_people(address_book)
-
⑤
逆向分析还原.proto文件
:通过上面的步骤,我们发现不管序列化和反序列化,我们首先得有.proto文件
,只要有了.proto
文件,我们就可以编译成python的proto模块,然后就可以正常序列化和反序列化了;所以逆向解析Protobuf的过程就是还原.proto文件
- 已知我们有了
yrx_example_person.bin
文件,通过cmd执行命令protoc --decode_raw < yrx_example_person.bin
即可反序列化看到左图第一版的结果,然后我们还原成中间第二版.proto文件的样子,再多次调整即可。有了.proto文件
就可以正常的序列化和反序列化了
- 已知我们有了
五、逆向解析 Protobuf案例
1、python序列化
-
① 如图,将序列化请求数据保存为
challenge_23_post.bin文件
,请求参数内容复制如下保存为.bin文件即可????Y??? ?y?
-
② 然后输入cmd命令
protoc --decode_raw < challenge_23_post.bin
查看反序列结果
-
③ 根据反编译结果理解,直接编写
challenge_23_post.proto文件
如下
-
④ 执行cmd命令
protoc -–python_out=. challenge_23_post.proto
将challenge_23_post.proto
编译生成python包challenge_23_post_pb2.py
-
⑤ 编写python代码生成序列化数据
import challenge_23_post_pb2 post_serialize = challenge_23_post_pb2.Ms1() post_serialize.filed1 = 2 post_serialize.filed2 = 219841801546160835 post_serialize.filed3 = 219841801546157763 post_serialize.filed4 = 36782765818179 print(post_serialize.SerializeToString()) with open(r"challenge_23_post.bin", "wb") as f: f.write(post_serialize.SerializeToString())
2、python反序列化
-
① 如图,将序列化响应数据保存为
challenge_23_resp.bin文件
,响应内容样例复制如下保存为.bin文件即可??0?G N(? 0?8?;@?LH?"P?"
-
② 然后输入cmd命令
protoc --decode_raw < challenge_23_resp.bin
查看反序列结果
-
③ 根据反编译结果理解,直接编写
challenge_23_resp.proto文件
如下
-
④ 执行cmd命令
protoc -–python_out=. challenge_23_resp.proto
将challenge_23_resp.proto
编译生成python包challenge_23_resp_pb2.py
-
⑤ 编写python代码反序列化结果
import challenge_23_resp_pb2 resp_deserialize = challenge_23_resp_pb2.Ms2() with open("challenge_23_resp.bin", "rb") as f: resp_deserialize.ParseFromString(f.read()) count = resp_deserialize.filed1 + resp_deserialize.filed2 + resp_deserialize.filed3 + resp_deserialize.filed4 + resp_deserialize.filed5 + resp_deserialize.filed6 + resp_deserialize.filed7 + resp_deserialize.filed8 + resp_deserialize.filed9 + resp_deserialize.filed10 print(count) # 47662