每日一题 day 50(DP topic)

12 篇文章 1 订阅
这篇博客探讨了如何运用动态规划(DP)解决一个经典的计算机科学问题——找到一个矩阵中从左上角到右下角的最小路径和。作者提供了两种不同的DP实现:一种是标准的二维DP解决方案,另一种则是优化空间效率的一维DP实现。通过实例展示了如何在给定的网格中找到路径,以使沿途经过的所有数字之和最小。这两种方法都确保了在遍历过程中只向右或向下移动,并且优化后的DP方案减少了内存使用。
摘要由CSDN通过智能技术生成

文章目录

problem

64. Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example 1:
在这里插入图片描述

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.

Example 2:

Input: grid = [[1,2,3],[4,5,6]]
Output: 12

approach 1DP

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>> dp(m+1, vector<int>(n+1, 999));
        dp[0][1] = 0;
        for(int i=1; i<=m; i++){
            for(int j=1; j<=n; j++){
                dp[i][j] = grid[i-1][j-1] + min(dp[i-1][j], dp[i][j-1]);
            }
        }
        return dp[m][n];
    }
};

approach 2 DP less space

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<int> dp(n, 0);
        for(int i=0; i<m; i++){
            for(int j=0; j<n; j++){
                if(j==0){
                    dp[j] += grid[i][j];
                }else{
                    if(dp[j]==0) dp[j] = dp[j-1] + grid[i][j];
                    else dp[j] = grid[i][j] + min(dp[j-1], dp[j]);
                }
            }
        }
        return dp[n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值