每日一题 day 46 (DP topic)

这是一个关于LeetCode动态规划题目1314的讨论,需要计算矩阵中每个单元格周围k阶区域内的元素之和。文章列举了错误的解题思路和两种正确解决方案。
摘要由CSDN通过智能技术生成

problem

1314. Matrix Block Sum
Given a m x n matrix mat and an integer k, return a matrix answer where each answer[i][j] is the sum of all elements mat[r][c] for:

  • i - k <= r <= i + k,
  • j - k <= c <= j + k, and
  • (r, c) is a valid position in the matrix.

Example 1:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
Output: [[12,21,16],[27,45,33],[24,39,28]]

Example 2:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
Output: [[45,45,45],[45,45,45],[45,45,45]]

wrong approach 1 TLE

class Solution {
public:
    vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {
        int m = mat.size(), n = mat[0].size();
        vector<vector<int>> ans(m, vector<int>(n, 0));
        for(int i=0; i<m; i++){
            for(int j=0; j<n; j++){
                for(int r=max(i-k, 0); r<=min(i+k, m-1); r++)
                    for(int c=max(j-k, 0); c<=min(j+k, n-1); c++)
                        ans[i][j] += mat[r][c];
            }
        }
        return ans;
    }
};

approach 2 DP

class Solution {
public:
    vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {
        int m = mat.size(), n = mat[0].size();
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for(int r=0; r<=min(k, m-1); r++)
            for(int c=0; c<=min(k, n-1); c++)
                dp[0][0] += mat[r][c];
        
        for(int i=0; i<m; i++){
            for(int j=0; j<n; j++){
                if(i==0 && j==0) continue;
                if(j==0){// down
                    dp[i][j] += dp[i-1][j];
                    if(i-1-k >= 0){//del
                        for(int c=max(j-k, 0); c<=min(j+k, n-1); c++)
                            dp[i][j] -= mat[i-1-k][c];
                    }
                    if(i+k < m){// add
                        for(int c=max(j-k, 0); c<=min(j+k, n-1); c++)
                            dp[i][j] += mat[i+k][c];
                    }
                }else{//right
                    dp[i][j] += dp[i][j-1];
                    if(j-1-k >= 0){// del
                        for(int r=max(i-k, 0); r<=min(i+k, m-1); r++)
                            dp[i][j] -= mat[r][j-1-k];
                    }
                    if(j+k < n){// add
                        for(int r=max(i-k, 0); r<=min(i+k, m-1); r++)
                            dp[i][j] += mat[r][j+k];
                    }
                }
            }
        }
        return dp;
    }
};

在这里插入图片描述

approach 3 wonderful DP

class Solution {
public: 
    int m,n;
    vector<vector<int>> prefix;
    int get(int i, int j){
        if(i<0 || j<0) return 0;
        if(i >= m) i=m-1;
        if(j >= n) j=n-1;
        return prefix[i][j];
    }
    vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {
        m = mat.size(), n = mat[0].size();
        prefix = vector<vector<int>>(m, vector<int>(n, 0));
        for(int i=0; i<m; i++)
            for(int j=0; j<n; j++)
                prefix[i][j] = mat[i][j] + get(i-1, j) + get(i, j-1) - get(i-1, j-1);
        vector<vector<int>> res = vector<vector<int>>(m, vector<int>(n, 0));
        for(int i=0; i<m; i++)
            for(int j=0; j<n; j++)
                res[i][j] = get(i+k,j+k) + get(i-k-1, j-k-1) - get(i+k, j-k-1) - get(i-k-1, j+k);
        return res;
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值