- 博客(4)
- 收藏
- 关注
原创 PaddleOCR二次训练,训练属于自己的数据集(linux)
1.1源码安装下载,找到PPOCRlabel.py文件,并运行它。3.点击查看标注内容是否正确,若正确则点击,不正确进行步骤四。下载成功后,运行PPOCRLabel文件,将弹出来标注软件。4.若不正确选择对应的框进行重新标注,并输入正确识别结果。2.自动标注,若有不对可进行人为修改。标注好后,需进行点击生成这三个文件。(需要很多的库,报错就安装)
2024-09-18 13:17:09 331
原创 visionpro(自学ing)
3.模板匹配,位置修正(模板匹配和位置修正一般配合使用)2.主代码,分为两个部分,一个是模板匹配找到基准点,之后是进行质量对比。4.1 完好模板的对比匹配,(统计训练当前模式,就是把当前图片加入到训练集当中)检测打印质量,根据设定标准进行检测,首先进行匹配找到对应位置设置为基点,之后根据完整的模板进行对比。4.与完好的模板进行匹配之后进行blob分析。
2024-01-24 11:31:20 1012
原创 opencv的使用
cv2.imshow('image', img)destroyAllwindows()img = cv2.imread('F:/ac/ac/1.png', cv2.IMREAD_GRAYSCALE)var = img.shapeimg1 = img[0:200, 0:200]b, g, r = cv2.split(img)img = cv2.merge((b, g, r))cur_img = img.copy()cur_img[:, :, 1] = 0cur_img[:, :, 2] = 0cv2.imsh
2023-12-15 17:08:00 131
原创 yolov8从下载到应用,查看训练是否到最佳结果(自学ing)
因为有时二者有一个极高,一个极低时,这样平均值是高的,但实际的效果并不会好。通过F1-score的方式来权衡Precision与Recall,可以有效的避免短板效应,这在数学上被称为调和平均数。x轴是真实类别,y轴是预测类别,根据这张图,我们可以看出分类模型发生的错误,和正在发生的错误。对于所有的种类,最好的结果置信度在0.259.对于不同的模型,有很多的准确性和回归,这样我们需要引入F1参数,来选择最优解。这幅图主要是置信度与准确率的关系,在置信度为0.935的情况下,准确率为1。错误结果为FN和TP。
2023-12-15 16:55:33 1966
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人