实验2 DFA(确定的有穷自动机)的化简
- 实验目的与要求
通过设计、编写和调试将确定的有穷自动机的状态数变为最少的C程序,使得学生掌握化简为有穷自动机的过程中的相关概念和方法。DFA的表现形式可以为表格或图形。
- 问题描述
每一个正规集都可以由一个状态数最少的DFA所识别,这个DFA是唯一的(不考虑同构的情况)。任意给定的一个DFA,根据以下算法设计一个C程序,将该DFA 化简为与之等价的最简DFA。
- 算法
(1)构造具有两个组的状态集合的初始划分I:接受状态组 F 和非接受状态组 Non-F。
(2)对I采用下面所述的过程来构造新的划分I-new.
For I 中每个组G do
Begin
当且仅当对任意输入符号a,状态s和读入a后转换到I的同一组中; /*最坏情况下,一个状态就可能成为一个组*/
用所有新形成的小组集代替I-new中的G;
end
(3)如果I-new=I,令I-final=I,再执行第(4)步,否则令I=I=new,重复步骤(2)。
(4)在划分I-final的每个状态组中选一个状态作为该组的代表。这些代表构成了化简后的DFA M'状态。令s是一个代表状态,而且假设:在DFA M中,输入为a时有从s到t转换。令t所在组的代表是r,那么在M’中有一个从s到r的转换,标记为a。令包含s0的状态组的代表是M’的开始状态,并令M’的接受状态是那些属于F的状态所在组的代表。注意,I-final的每个组或者仅含F中的状态,或者不含F中的状态。
(5)如果M’含有死状态(即一个对所有输入符号都有刀自身的转换的非接受状态d),则从M’中去掉它;删除从开始状态不可到达的状态;取消从任何其他状态到死状态的转换。