算法-前缀和与差分

算法-前缀和与差分

1.一维前缀和

//数组a[1-n]
//预处理时间复杂度O(n)
//查询区间和O(1)
//前缀和数组s[1-n]
for(int i=1;i<=n;i++)
{
    s[i]=s[i-1]+a[i];
}
//查询下标l到r的a数组和
ans=s[r]-s[l-1];

2.二维前缀和

//二维数组a[1-n][1-m]
//预处理时间复杂度O(nm)
//查询矩形范围和O(1)
//前缀和数组s[1-n][1-m]
for(int i=1;i<=n;i++)
{
    for(int j=1;j<=m;j++)
    {
        s[i][j]=a[i][j]+s[i-1][j]+s[i][j-1]-s[i-1][j-1];
    }
}
//查询以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和
ans=s[x2][y2]-s[x2][y1-1]-s[x1-1][y2]+s[x1-1][y1-1];

3.一维差分

//数组a[1-n]
//预处理时间复杂度O(n)
//整个区间范围增加或减少O(1)
//查询单个数组值O(n)
//差分数组d[1-n]
for(int i=1;i<=n;i++)
{
    d[i]=d[i]-d[i-1];
}
//给区间[l, r]中的每个数加上c
d[l]+=c,d[r+1]-=c;
//查询原数组a[x]的值
for(int i=1;i<=x;i++)
{
    ans+=d[i];
}

4.二维差分

//二维数组a[1-n][1-m]
//预处理时间复杂度O(nm)
//整个矩形范围增加或减少O(1)
//查询单个数组值O(nm)
//差分数组d[1-n][1-m]
for(int i=1;i<=n;i++)
{
    for(int j=1;j<=m;j++)
    {
        d[i][j]=a[i][j]-a[i-1][j]-a[i][j-1]+a[i-1][j-1];
    }
}
//给以(x1,y1)为左上角,以(x2,y2)为右下角的矩形中的每个数加上c
d[x1][y1]+=c,d[x2+1][y1]-=c,d[x1][y2+1]-=c,d[x2+1][y2+1]+=c;
//查询原数组a[x][y]的值
for(int i=1;i<=x;i++)
{
    for(int j=1;j<=y;j++)
    {
        ans+=d[i][j];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值