算法-前缀和与差分
1.一维前缀和
//数组a[1-n]
//预处理时间复杂度O(n)
//查询区间和O(1)
//前缀和数组s[1-n]
for(int i=1;i<=n;i++)
{
s[i]=s[i-1]+a[i];
}
//查询下标l到r的a数组和
ans=s[r]-s[l-1];
2.二维前缀和
//二维数组a[1-n][1-m]
//预处理时间复杂度O(nm)
//查询矩形范围和O(1)
//前缀和数组s[1-n][1-m]
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
s[i][j]=a[i][j]+s[i-1][j]+s[i][j-1]-s[i-1][j-1];
}
}
//查询以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和
ans=s[x2][y2]-s[x2][y1-1]-s[x1-1][y2]+s[x1-1][y1-1];
3.一维差分
//数组a[1-n]
//预处理时间复杂度O(n)
//整个区间范围增加或减少O(1)
//查询单个数组值O(n)
//差分数组d[1-n]
for(int i=1;i<=n;i++)
{
d[i]=d[i]-d[i-1];
}
//给区间[l, r]中的每个数加上c
d[l]+=c,d[r+1]-=c;
//查询原数组a[x]的值
for(int i=1;i<=x;i++)
{
ans+=d[i];
}
4.二维差分
//二维数组a[1-n][1-m]
//预处理时间复杂度O(nm)
//整个矩形范围增加或减少O(1)
//查询单个数组值O(nm)
//差分数组d[1-n][1-m]
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
d[i][j]=a[i][j]-a[i-1][j]-a[i][j-1]+a[i-1][j-1];
}
}
//给以(x1,y1)为左上角,以(x2,y2)为右下角的矩形中的每个数加上c
d[x1][y1]+=c,d[x2+1][y1]-=c,d[x1][y2+1]-=c,d[x2+1][y2+1]+=c;
//查询原数组a[x][y]的值
for(int i=1;i<=x;i++)
{
for(int j=1;j<=y;j++)
{
ans+=d[i][j];
}
}