最近在做单b值DW图像的去噪算法研究,为了实现对比效果,所以这几天对noise2noise在DWI上的运用进行实现,而且今天收获很大,所以我又来记录了(嘿嘿,积少成多嘛)
一、单b值数据: 文件后缀 .nii ,使用库dipy(或者nibabel)读取
from dipy.io.image import load_nifti
nii_path = "file path"
data_array, affine, _ = load_nifti(nii_path, return_img=True)
我得到的data_array是四维的(deepth,height,width,n),第4维就是根据b值的采集个数而产生的。
二、如何获取noise2noise图像对(input,target)
由于单b值dwi数据本身的特性:b值<=5,近似看作干净图像(clean),剩余的都是同b值的含噪图像,只是采集的梯度方向不一样。
就以b1000为例,要想找出适用于noise2noise的噪声图像对,其实不用像原论文那样(使用clean,加噪得noise1,再加噪得noise2,用noise1-noise2做图像对),对于单b值dwi,我们可以在同一b值下,使用某种相似度计算方法,找出梯度方向最近似的两个b1000噪