wandb

功能

  • 版本管理:wandb.Artifact(),可以上传一些文件/文件夹到云端
  • 监测,profile
  • 支持输出图片、视频、表格、html等多媒体格式
  • 超参数搜索,等…

注册,安装,登录

  1. 进入官网,注册一个账号
  2. 命令行安装
pip install wandb
  1. 终端登录:输入如下命令后回车
wandb login
  1. 根据终端提示,打开网页复制API key,粘贴到终端

使用(可参考官方文档,源码)

  1. wandb.init() 初始化,有几个常用参数:
    project:指定项目名称,每次运行是一个run
    entity:团队名称/用户名;没指定entity,则记录默认发送到用户名下
    name:指定本次run的名称
    config:是一个字典,可以记录本次训练的配置和超参数在config里。
    要往config里头追加参数:wandb.config.updata({“para-name”: para-value})
  2. wandb.log()记录相关指标,传入字典
  3. wandb.finish()

示例:

import wandb  # 导包
wandb.init(project="this project",
           entity="xxx", # 用户名/团队名
           name="first run",
           config={
               "lr": 1e-4,
               "epoch": 1,
               "data": 'cifar10'
           })
for i in range(1,11):
    loss = 20-i
    wandb.log({"loss": loss})

wandb.finish()

运行完后,观察终端的返回结果。点进链接,查看可视化界面。可以查看系统的使用情况(监测服务器运行时环境),可以查看不同run(运行一次是一个run)的对比结果。

观察图片的输出

test_dataset = datasets.CIFAR10(root="./cifar10", train=False, download=False, transform=torchvision.transforms.ToTensor())

wandb.Image()的输入参数:numpy,pil,tensor

import wandb
from PIL import Image

wandb.init(project="this project",
           config={
               "lr": 1e-3,
               "epoch": 3,
               "data": 'cifar10'
           })
for i in range(3):
    img = test_dataset[i][0]  # pil or tensor
    wandb.log({"img": wandb.Image(img)})

# img.save("./img.jpg")
wandb.finish()

跟踪模型(参数,梯度等)

wandb.watch(),常用参数如下:
model:要监控的模型
log:要记录的指标,该参数有4个可选值:gradients(默认),parameters,all,None
可以通过观察参数值是否趋于稳定来判断模型的学习情况,通过看梯度是否趋于0来观察模型收敛情况。
log_freq:记录指标的频率,默认值1000个step
log_graph:是否可视化模型结构,默认False

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值