前面学过了卷积,单有卷积其实存在一些问题,卷积对于位置非常的敏感,这不是好事,比方说:在训练时我检测到边缘在某个位置,但在其他的图像中未必其边缘就刚好在某个位置,可能会有一定程度的偏移,因此需要引出池化层。
池化层类型。二维最大池化:返回滑动窗口中的最大值,提取每个窗口中最强的模式信号。平均池化层:因为平均了,比较柔和。
池化中三个超参数:窗口大小,padding, stride。没有需要学习的参数。

池化之后图像大小计算:
准确来说,应该是右式子下取整等于左式子。
总结:池化类型2种。超参数三个。池化可以改善卷积对于位置的敏感性。通常池化层在卷积层之后。