池化层(类型+超参数)

文章讨论了卷积神经网络中卷积层的位置敏感问题,引入池化层作为解决方案。池化层有两种主要类型——最大池化和平均池化,分别用于提取最显著特征和平均信号。超参数包括窗口大小、padding和stride,它们影响池化后图像的尺寸。通常,池化层配置在卷积层之后,以增强模型对位置变化的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        前面学过了卷积,单有卷积其实存在一些问题,卷积对于位置非常的敏感,这不是好事,比方说:在训练时我检测到边缘在某个位置,但在其他的图像中未必其边缘就刚好在某个位置,可能会有一定程度的偏移,因此需要引出池化层。

        池化层类型。二维最大池化:返回滑动窗口中的最大值,提取每个窗口中最强的模式信号。平均池化层:因为平均了,比较柔和。

        池化中三个超参数:窗口大小,padding,  stride。没有需要学习的参数。

池化层的特点

        池化之后图像大小计算:laterWidth = \frac{formerWidth - kernelSize}{stride} +1

准确来说,应该是右式子下取整等于左式子。 

        总结:池化类型2种。超参数三个。池化可以改善卷积对于位置的敏感性。通常池化层在卷积层之后。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值