RLHF 基于人类反馈的强化学习

1 针对一个问题,生成多个答案:针对某个问题,由一个大语言模型生成多个答案/或不同大语言模型针对该问题生成答案。

2 生成有排序的数据集:得到了一个问题的多个答案,人工/标注模型 对好的答案打高分,差的答案打低分,这样相当于根据答案的好坏对多个答案进行排序(ranking)。

上述人工/标注模型 起到标注顺序的作用,给定排序的真实标签。

3 训练奖励模型,让奖励模型对大语言模型生成的答案打分:让奖励模型学习什么是好答案,什么是坏答案,对好的答案给高分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值