1 针对一个问题,生成多个答案:针对某个问题,由一个大语言模型生成多个答案/或不同大语言模型针对该问题生成答案。
2 生成有排序的数据集:得到了一个问题的多个答案,人工/标注模型 对好的答案打高分,差的答案打低分,这样相当于根据答案的好坏对多个答案进行排序(ranking)。
上述人工/标注模型 起到标注顺序的作用,给定排序的真实标签。
3 训练奖励模型,让奖励模型对大语言模型生成的答案打分:让奖励模型学习什么是好答案,什么是坏答案,对好的答案给高分。
1 针对一个问题,生成多个答案:针对某个问题,由一个大语言模型生成多个答案/或不同大语言模型针对该问题生成答案。
2 生成有排序的数据集:得到了一个问题的多个答案,人工/标注模型 对好的答案打高分,差的答案打低分,这样相当于根据答案的好坏对多个答案进行排序(ranking)。
上述人工/标注模型 起到标注顺序的作用,给定排序的真实标签。
3 训练奖励模型,让奖励模型对大语言模型生成的答案打分:让奖励模型学习什么是好答案,什么是坏答案,对好的答案给高分。