冶炼金属 (第十四届蓝桥杯省赛C++ B组)详解(二分+推公式)

题目描述: 

小蓝有一个神奇的炉子用于将普通金属 O 冶炼成为一种特殊金属 X。

这个炉子有一个称作转换率的属性 V,V 是一个正整数,这意味着消耗 V 个普通金属 O 恰好可以冶炼出一个特殊金属 X,当普通金属 O 的数目不足 V 时,无法继续冶炼。

现在给出了 N 条冶炼记录,每条记录中包含两个整数 A 和 B,这表示本次投入了 A个普通金属 O,最终冶炼出了 B 个特殊金属 X。

每条记录都是独立的,这意味着上一次没消耗完的普通金属 O不会累加到下一次的冶炼当中。

根据这 N 条冶炼记录,请你推测出转换率 V 的最小值和最大值分别可能是多少,题目保证评测数据不存在无解的情况

输入格式

第一行一个整数 N,表示冶炼记录的数目。

接下来输入 N 行,每行两个整数 A、B,含义如题目所述。

输出格式

输出两个整数,分别表示 V 可能的最小值和最大值,中间用空格分开。

数据范围

对于 30% 的评测用例,1≤N≤10^2。
对于 60% 的评测用例,1≤N≤10^3。
对于 100% 的评测用例,1≤N≤10^4,1≤B≤A≤10^9。

输入样例:
3
75 3
53 2
59 2
输出样例:
20 25
样例解释

当 V=20 时,有:⌊75/20⌋=3,⌊53/20⌋=2,⌊59/20⌋=2,可以看到符合所有冶炼记录。

当 V=25 时,有:⌊75/25⌋=3,⌊53/25⌋=2,⌊59/25⌋=2,可以看到符合所有冶炼记录。

且再也找不到比 20 更小或者比 25 更大的符合条件的 V 值了。


推公式思路: 

根据上述样例:V=75/3 = 25   假如我们在得到b的基础上再加1个试试   V=75/4 = 18....3 =19

                         V=53/2 = 26   会得到怎样的v呢                                     V=53/3 = 17.....2=18

                         V=59/2 = 29                                                                   V=59/3 = 19......2=20

                                                                                                     因为v肯定是整数,所以有                                                                                                     余数肯定不行,所以我们给她                                                                                                      向上取整一下

根据答案的输出,从上述式子可以看出,再第一组式子中取最小值能满足所有情况,在第二组极限情况下,我们可以发现取这组的最大值,可以满足答案情况,所以就可以推出取第一组的最小值,第二组的最大值。


也可也设转化率为V,A/V = B,  根据式子可以看出想要满足V可以取到B但是不能取到B+1

所以推出 A>=B*V  A < V*(B+1)

(B+1)/A < V <= A/B

最大值:A/B

最小值:(B+1)/ A  + 1 

二分思路:


推公式代码:

#include<iostream>
#include<cmath>

using namespace std;

int main()
{
    int n;
    cin >> n;
    int maxn = 1e9,minn = 1;
    while(n--)
    {
        int a,b;
        cin >> a >> b;
        int l = a/(b+1) + 1,r = a / b;
        maxn = min(maxn,r);
        minn = max(minn,l);
    }
    cout << minn << " " << maxn;
    return 0;
}

二分代码:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1e4+10;
int a[N],b[N];
int n;
//找到一个B>=A/V
bool check1(int mid)
{
    for(int i=0;i<n;i++)
    {
        if(b[i] < a[i] / mid) return false;
    }
    return true;
}
//根据B >= A/V找到最后一个 B>=A/V的
bool check2(int mid)
{
    for(int i=0;i<n;i++)
    {
        if(b[i] > a[i] / mid) return false;
    }
    return true;
}


int main()
{
    cin >> n;
    int vmax = 0,vmin = 0;
    for(int i=0;i<n;i++) scanf("%d %d", &a[i], &b[i]);
    int l = 1,r = 1e9;
    while(l < r)
    {
        int mid = l + r >> 1;
        if(check1(mid)) r = mid;
        else l = mid + 1;
    }
    vmin = l;
    l = 1,r = 1e9;
    while(l < r)
    {
        int mid = l + r + 1 >> 1;
        if(check2(mid)) l = mid;
        else r = mid - 1;
    }
    vmax = l;
    cout << vmin << " " << vmax << endl;
    return 0;
}

### 关于第十四届蓝桥杯B冶炼金属题目解析 #### 问题描述 给定 N 条冶炼记录,每条记录包含两个整数 A 和 B,表示投入 A 个普通金属 O 可以冶炼出 B 个特殊金属 X。存在一个转换率 V,意味着消耗 V 个普通金属 O 恰好可以冶炼出一个特殊金属 X[^1]。 #### 解决方案概述 为了找到合适的转换率 V,使得每次都能恰好冶炼出所需的数量而不浪费材料,可以通过二分查找来确定最佳的转换率 V。此方法基于枚举速率呈抛物线形状的事实,即答案可能存在于速率过低、刚好合适或过高三种情况之一。通过设定合理的上下边界并逐步缩小范围,能够高效地定位到最优解[^3]。 #### 实现细节 考虑到输入数据规模较大时暴力求解效率低下,采用二分法不仅提高了算法性能还简化了逻辑处理过程。具体实现如下: ```c #include <stdio.h> #define MAXN 100005 int n; long long a[MAXN], b[MAXN]; // 判断当前假设的转化率v是否满足条件 bool check(long long v){ for(int i=0;i<n;++i){ if((a[i]+v-1)/v != b[i]) return false; // 计算所需次数并与实际产出比较 } return true; } void solve(){ scanf("%d",&n); for(int i=0;i<n;++i)scanf("%lld%lld", &a[i],&b[i]); long long l = 1, r = 1e9, mid, ans=-1; while(l<=r){ mid=(l+r)>>1; if(check(mid)){ ans=mid;r=mid-1;// 如果符合条件尝试更小值 }else{ l=mid+1; // 否则增大下限继续搜索 } } printf("%lld\n",ans); } ``` 上述代码实现了对转换率 V 的二分查找,并利用 `check` 函数验证每一个中间值是否能完美匹配所有的 (A,B)合。最终输出最小化的有效转换率 V。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值