【Leetcode】2009. 使数组连续的最少操作数

文章讲述了如何通过先对整数数组进行排序,去除重复元素,然后使用二分查找找到满足条件的最大元素,计算每个元素操作次数,最终确定使数组连续的最少操作次数。时间复杂度为O(nlogn),空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

题目

题目链接🔗
给你一个整数数组 n u m s nums nums 。每一次操作中,你可以将 n u m s nums nums任意 一个元素替换成 任意 整数。

如果 n u m s nums nums 满足以下条件,那么它是 连续的

n u m s nums nums 中所有元素都是 互不相同 的。
n u m s nums nums最大 元素与 最小 元素的差等于 n u m s . l e n g t h − 1 nums.length - 1 nums.length1
比方说, n u m s = [ 4 , 2 , 5 , 3 ] nums = [4, 2, 5, 3] nums=[4,2,5,3]连续的 ,但是 n u m s = [ 1 , 2 , 3 , 5 , 6 ] nums = [1, 2, 3, 5, 6] nums=[1,2,3,5,6] 不是连续的

请你返回使 nums 连续 的 最少 操作次数。

示例 1
输入:nums = [4,2,5,3]
输出:0
解释:nums 已经是连续的了。

示例 2
输入:nums = [1,2,3,5,6]
输出:1
解释:一个可能的解是将最后一个元素变为 4 。
结果数组为 [1,2,3,5,4] ,是连续数组。

示例 3
输入:nums = [1,10,100,1000]
输出:3
解释:一个可能的解是:

  • 将第二个元素变为 2 。
  • 将第三个元素变为 3 。
  • 将第四个元素变为 4 。

结果数组为 [1,2,3,4] ,是连续数组。

提示:

  • 1 ≤ n u m s . l e n g t h ≤ 1 0 5 1 \leq nums.length \leq 10^5 1nums.length105
  • 1 ≤ n u m s [ i ] ≤ 1 0 9 1 \leq nums[i] \leq 10^9 1nums[i]109

思路

  1. 对数组进行排序,这样相邻的元素就可以保证是连续的。然后去除重复元素,确保数组中的元素互不相同。对于数组中的每个元素 n u m s [ i ] nums[i] nums[i],我们需要找到满足条件的最大元素 n u m s [ j ] nums[j] nums[j],使得 n u m s [ j ] − n u m s [ i ] = n u m s . s i z e ( ) − 1 nums[j] - nums[i] = nums.size() - 1 nums[j]nums[i]=nums.size()1
  2. 使用二分查找来寻找满足条件的最大元素。具体地,可以遍历数组中的每个元素 n u m s [ i ] nums[i] nums[i],然后使用二分查找找到最大值不超过 n u m s [ i ] + n u m s . s i z e ( ) − 1 nums[i] + nums.size() - 1 nums[i]+nums.size()1 的元素,即 n u m s [ j ] ≤ n u m s [ i ] + n u m s . s i z e ( ) − 1 nums[j] \leq nums[i] + nums.size() - 1 nums[j]nums[i]+nums.size()1
  3. 对于每个元素 n u m s [ i ] nums[i] nums[i],可以计算需要的操作次数为 n u m s . s i z e ( ) − ( j − i + 1 ) nums.size() - (j - i + 1) nums.size()(ji+1),其中 j j j 是满足条件的最大元素的下标。

代码

class Solution {
public:
    int minOperations(vector<int>& nums) {
        ranges::sort(nums);
        int n = nums.size();
        nums.resize(unique(nums.begin(), nums.end()) - nums.begin());
        int m = nums.size();
        int res = INT_MAX;
        for(int i = 0; i < m; i++) {
            int x = nums[i];
            int y = x + n - 1;
            int l = i, r = m - 1;
            while(l < r) {
                int mid = (l + r + 1) / 2;
                if(nums[mid] > y) r = mid - 1;
                else l = mid;
            }
            res = min(res, n - (l - i + 1));
        } 
        return res;
    }
};

复杂度分析

时间复杂度

O ( n log ⁡ n ) O(n \log n) O(nlogn)

空间复杂度

O ( 1 ) O(1) O(1)

结果

在这里插入图片描述

总结

关键在于如何通过排序和遍历找到满足条件的最小操作次数。我们通过排序数组并去除重复元素,然后对每个元素进行遍历,通过二分查找找到最大值不超过 y y y 的元素,并计算需要的操作次数,最后选择操作次数最小的那个作为结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想要AC的dly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值