基础算法(排序,N皇后)

/*希尔排序(Shell Sort)是一种排序算法,它是插入排序的一种改进版本。希尔排序通过将数组分成若干个小的子数组(子列表),然后对这些子数组进行插入排序,最后合并这些有序的子数组来完成排序。它的独特之处在于它使用了不同的增量序列来提高排序的效率。

希尔排序的主要思想是,通过首先排序距离较远的元素,然后逐渐减小间隔(增量),最终对整个数组进行排序。这种分而治之的策略可以显著减少插入排序的工作量,因为插入排序对部分有序的数组表现更好。

希尔排序的基本步骤如下:

1. **选择增量序列**:首先,选择一个增量序列(也称为间隔序列),通常以递减的方式选择。常用的增量序列包括希尔增量(Hibbard序列)和希尔-希尔增量(Sedgewick序列)等。

2. **分组**:将数组根据选定的增量分成若干子数组。

3. **对每个子数组进行插入排序**:对每个子数组应用插入排序算法,这样每个子数组都会变得更有序。

4. **逐渐缩小增量**:重复步骤2和步骤3,逐渐减小增量,直到增量为1。

5. **合并子数组**:当增量减小到1时,最后一次排序将会对整个数组进行插入排序。此时,数组已经在较小的增量下部分有序,因此排序操作会更加高效。

希尔排序的性能取决于增量序列的选择。不同的增量序列可能会导致不同的性能。希尔排序的平均时间复杂度通常在 O(n log n) 和 O(n^2) 之间,具体取决于增量序列的选择。尽管它在某些情况下比简单的插入排序更快,但希尔排序不如一些更现代的排序算法,如快速排序和归并排序,通常更受欢迎。

希尔排序是一种经典的排序算法,可以用于排序中等大小的数据集,尤其在内存有限的情况下是有用的。虽然它不如某些现代排序算法快,但了解它有助于理解排序算法的原理和设计策略。*/

//希尔排序
#include <iostream>
using namespace std;

void shellSort(int arr[], int n) {
    for (int gap = n / 2; gap > 0; gap /= 2) {
        for (int i = gap; i < n; i++) {
            int temp = arr[i];
            int j;
            for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {
                arr[j] = arr[j - gap];
            }
            arr[j] = temp;
        }
    }
}

int main() {
    int arr[] = {12, 34, 54, 2, 3};
    int n = sizeof(arr) / sizeof(arr[0]);

    cout << "Original Array: ";
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }

    shellSort(arr, n);

    cout << "\nSorted Array: ";
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }

    return 0;
}

/*N皇后问题具有以下特征

问题定义:N皇后问题是一个组合问题,要求在N x N的棋盘上放置N个皇后,以使它们互相不攻击,即不在同一行、同一列或同一对角线上。
排列性质:N皇后问题是一个排列问题,解决方案是N个皇后的排列,其中每个皇后占据一行,一列。
互斥条件:问题具有明确的互斥条件,即每对皇后不能互相攻击。这包括不在同一行、同一列或同一对角线上。
唯一性:在N皇后问题中,通常要找到所有可能的解决方案。问题可以有多个解,因为对称性和旋转等因素会导致不同的布局。
组合问题:N皇后问题是一个组合问题,通常可以使用回溯法、分治法或其他组合问题的解决方法来解决。
NP难问题:N皇后问题是一个NP难问题,尤其是当N增大时,搜索所有可能的解决方案会变得非常耗时。因此,通常需要使用高效的算法来解决它。
应用:虽然N皇后问题本身没有直接的实际应用,但它是一种用于解释、理解和测试组合算法的经典问题,可以作为教育和研究的有用工具。*/

//N皇后问题c++
#include <iostream>
#include <vector>

using namespace std;

// 打印解决方案
void printSolution(const vector<int>& queens) {
    int N = queens.size();
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            if (queens[i] == j) {
                cout << "Q ";
            } else {
                cout << ". ";
            }
        }
        cout << endl;
    }
    cout << endl;
}

// 检查在(row, col)位置放置皇后是否安全
bool isSafe(const vector<int>& queens, int row, int col) {
    for (int i = 0; i < row; i++) {
        if (queens[i] == col || abs(queens[i] - col) == abs(i - row)) {
            return false;
        }
    }
    return true;
}

// 使用回溯法解决N皇后问题
void solveNQueens(vector<int>& queens, int row, int N) {
    if (row == N) {
        // 找到了一个解决方案
        printSolution(queens);
    } else {
        for (int col = 0; col < N; col++) {
            if (isSafe(queens, row, col)) {
                queens[row] = col;
                solveNQueens(queens, row + 1, N);
            }
        }
    }
}

// 主函数
int main() {
    int N;
    cout << "请输入N皇后问题的规模 (N): ";
    cin >> N;

    vector<int> queens(N, -1); // 初始化N个皇后的位置

    solveNQueens(queens, 0, N);

    return 0;
}


//c语言
#include <stdio.h>
#include <stdbool.h>

#define N 8

void printSolution(int board[N][N]) {
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            printf("%2d ", board[i][j]);
        }
        printf("\n");
    }
}

bool isSafe(int board[N][N], int row, int col) {
    int i, j;

    // 检查当前列上是否有其他皇后
    for (i = 0; i < row; i++) {
        if (board[i][col])
            return false;
    }

    // 检查左上对角线
    for (i = row, j = col; i >= 0 && j >= 0; i--, j--) {
        if (board[i][j])
            return false;
    }

    // 检查右上对角线
    for (i = row, j = col; i >= 0 && j < N; i--, j++) {
        if (board[i][j])
            return false;
    }

    return true;
}

bool solveNQueens(int board[N][N], int row) {
    if (row == N) {
        printSolution(board);
        return true;
    }

    bool result = false;
    for (int i = 0; i < N; i++) {
        if (isSafe(board, row, i)) {
            board[row][i] = 1;
            result = solveNQueens(board, row + 1) || result;
            board[row][i] = 0;
        }
    }
    return result;
}

int main() {
    int board[N][N] = {0};

    if (!solveNQueens(board, 0)) {
        printf("无解\n");
    }

    return 0;
}

/*分治法是一种将复杂问题分解成较小子问题,解决子问题,然后将子问题的解合并以得到原问题解的算法设计策略。以下是一个经典的分治法例子:归并排序。

归并排序是一种常见的排序算法,它使用分治法将一个大数组分解成若干子数组,然后将这些子数组排序并合并以得到最终排序的数组。归并排序的主要步骤如下:

分解:将数组划分为两个子数组,直到每个子数组只包含一个元素。

排序:逐个排序每个子数组。

合并:将排好序的子数组合并为一个大的有序数组。

下面是一个使用分治法实现归并排序的C++示例:*/

//分治法

#include <iostream>
#include <vector>

// 合并两个有序数组
void merge(std::vector<int>& arr, int left, int mid, int right) {
    int n1 = mid - left + 1;
    int n2 = right - mid;

    std::vector<int> leftArr(n1);
    std::vector<int> rightArr(n2);

    for (int i = 0; i < n1; i++) {
        leftArr[i] = arr[left + i];
    }

    for (int j = 0; j < n2; j++) {
        rightArr[j] = arr[mid + 1 + j];
    }

    int i = 0, j = 0, k = left;

    while (i < n1 && j < n2) {
        if (leftArr[i] <= rightArr[j]) {
            arr[k] = leftArr[i];
            i++;
        } else {
            arr[k] = rightArr[j];
            j++;
        }
        k++;
    }

    while (i < n1) {
        arr[k] = leftArr[i];
        i++;
        k++;
    }

    while (j < n2) {
        arr[k] = rightArr[j];
        j++;
        k++;
    }
}

// 归并排序
void mergeSort(std::vector<int>& arr, int left, int right) {
    if (left < right) {
        int mid = left + (right - left) / 2;

        mergeSort(arr, left, mid);
        mergeSort(arr, mid + 1, right);

        merge(arr, left, mid, right);
    }
}

int main() {
    std::vector<int> arr = {38, 27, 43, 3, 9, 82, 10};

    std::cout << "原始数组: ";
    for (int num : arr) {
        std::cout << num << " ";
    }

    mergeSort(arr, 0, arr.size() - 1);

    std::cout << "\n排序后的数组: ";
    for (int num : arr) {
        std::cout << num << " ";
    }

    return 0;
}




//c语言
#include <stdio.h>

// 合并两个有序数组
void merge(int arr[], int left, int mid, int right) {
    int n1 = mid - left + 1;
    int n2 = right - mid;

    int leftArr[n1];
    int rightArr[n2];

    for (int i = 0; i < n1; i++) {
        leftArr[i] = arr[left + i];
    }

    for (int j = 0; j < n2; j++) {
        rightArr[j] = arr[mid + 1 + j];
    }

    int i = 0, j = 0, k = left;

    while (i < n1 && j < n2) {
        if (leftArr[i] <= rightArr[j]) {
            arr[k] = leftArr[i];
            i++;
        } else {
            arr[k] = rightArr[j];
            j++;
        }
        k++;
    }

    while (i < n1) {
        arr[k] = leftArr[i];
        i++;
        k++;
    }

    while (j < n2) {
        arr[k] = rightArr[j];
        j++;
        k++;
    }
}

// 归并排序
void mergeSort(int arr[], int left, int right) {
    if (left < right) {
        int mid = left + (right - left) / 2;

        mergeSort(arr, left, mid);
        mergeSort(arr, mid + 1, right);

        merge(arr, left, mid, right);
    }
}

int main() {
    int arr[] = {38, 27, 43, 3, 9, 82, 10};
    int n = sizeof(arr) / sizeof(arr[0]);

    printf("原始数组: ");
    for (int i = 0; i < n; i++) {
        printf("%d ", arr[i]);
    }

    mergeSort(arr, 0, n - 1);

    printf("\n排序后的数组: ");
    for (int i = 0; i < n; i++) {
        printf("%d ", arr[i]);
    }

    return 0;
}

常见的时间复杂度包括:

  1. O(1) - 常数时间复杂度
  2. O(log n) - 对数时间复杂度
  3. O(n) - 线性时间复杂度
  4. O(n log n) - 线性对数时间复杂度
  5. O(n^2) - 平方时间复杂度
  6. O(n^k) - 多项式时间复杂度(其中 k > 2)
  7. O(2^n) - 指数时间复杂度
  8. O(n!) - 阶乘时间复杂度

以下是这些时间复杂度按照增长顺序从小到大的排列:

  1. O(1)
  2. O(log n)
  3. O(n)
  4. O(n log n)
  5. O(n^2)
  6. O(n^k) (k > 2)
  7. O(2^n)
  8. O(n!)

这个排序是根据时间复杂度的增长速度来排列的,其中 O(1) 表示最快的算法,O(n!) 表示最慢的算法。通常情况下,我们希望选择尽可能快的算法来解决问题,但问题的特定性质和输入规模也会影响选择。一般来说,具有更低时间复杂度的算法在处理大规模数据时更有效。但在实际应用中,常常需要综合考虑时间复杂度、空间复杂度以及问题本身的特点来选择合适的算法。


空间复杂度是算法在执行过程中所需的额外内存空间与输入数据规模之间的关系。它描述了算法的内存使用情况,通常以大O符号(例如O(1)、O(n)、O(n^2)等)来表示。空间复杂度取决于算法中的数据结构、临时变量和递归调用等因素。

以下是常见的空间复杂度:

  1. O(1) - 常数空间复杂度:算法的额外空间使用不随输入规模的增长而增加,通常只使用常数个额外变量。例如,迭代计算的斐波那契数列。
  2. O(log n) - 对数空间复杂度:额外空间使用随输入规模的对数增长。通常出现在分治算法和递归算法中,因为它们的递归深度是对数级别的。
  3. O(n) - 线性空间复杂度:额外空间使用随输入规模线性增长,与输入数据的大小成正比。例如,存储一个与输入数据规模相等的数组。
  4. O(n log n) - 线性对数空间复杂度:额外空间使用随输入规模的线性对数增长。通常出现在某些高级排序算法中,如归并排序。
  5. O(n^2) - 平方空间复杂度:额外空间使用随输入规模的平方增长。例如,存储一个二维数组。
  6. O(n^k) - 多项式空间复杂度(其中 k > 2):额外空间使用随输入规模的多项式级别增长。通常出现在一些计算机代数算法中。
  7. O(2^n) - 指数空间复杂度:额外空间使用随输入规模指数级增长。通常出现在一些指数级别的组合问题中,如旅行商问题。
  8. O(n!) - 阶乘空间复杂度:额外空间使用随输入规模的阶乘级别增长。通常出现在某些排列和组合问题的解空间中。

选择合适的算法以及注意控制空间复杂度对于解决不同问题非常重要,特别是在资源受限或大规模数据处理的情况下。合理管理内存使用可以提高程序的效率并降低资源消耗。

排序算法

排序算法可以根据它们是否保持相等元素的相对顺序来分为两类:稳定的排序算法不稳定的排序算法。以下是一些常见的排序算法,根据它们的稳定性进行分类:

稳定的排序算法

  1. 冒泡排序(Bubble Sort)
  2. 插入排序(Insertion Sort)
  3. 归并排序(Merge Sort)
  4. 基数排序(Radix Sort)
  5. 桶排序(Bucket Sort)

在稳定的排序算法中,相等元素的相对顺序不会改变。这意味着如果在原始数据中存在多个相等的元素,它们在排序后仍然会保持相对顺序。

不稳定的排序算法

  1. 选择排序(Selection Sort)
  2. 快速排序(Quick Sort)
  3. 希尔排序(Shell Sort)
  4. 堆排序(Heap Sort)
  5. 计数排序(Counting Sort)

在不稳定的排序算法中,相等元素的相对顺序可能会改变。这意味着排序后,原始数据中相等元素之间的顺序关系可能会被打破。

在实际应用中,稳定性通常是一个重要的考虑因素。如果需要在排序后保持相等元素的相对顺序,应选择稳定的排序算法。不稳定的排序算法可能更快,但在某些情况下可能不适合需要保持相对顺序的问题。因此,选择排序算法时应根据问题的特性和需求来权衡性能和稳定性。

分治、动态规划、贪心和回溯是解决不同类型问题的常用算法思想。下面我将简要解释每种思想以及适用的问题领域:

  1. 分治(Divide and Conquer)
    • 思想:将大问题分解为子问题,解决子问题,然后将它们的解合并以解决原始问题。
    • 适用问题:合并排序、快速排序、归并排序、最接近点对问题、大整数乘法等。
  2. 动态规划(Dynamic Programming)
    • 思想:将问题分解为重叠子问题,解决子问题并存储其结果,避免重复计算,通常采用自底向上或自顶向下的方式。
    • 适用问题:背包问题、最短路径问题、编辑距离、斐波那契数列、最长公共子序列等。
  3. 贪心(Greedy)
    • 思想:在每一步选择当前最优的解,而不考虑全局最优解,希望通过每一步的最优选择得到全局最优解。
    • 适用问题:最小生成树问题、最短路径问题、部分调度问题、霍夫曼编码等。
  4. 回溯(Backtracking)
    • 思想:采用试错思想,通过逐步构建解的方式搜索问题的所有可能解,当遇到无法继续下去的情况时,进行回溯。
    • 适用问题:八皇后问题、组合总和问题、排列问题、旅行商问题、图着色问题等。

下面是一些示例问题,以说明这些思想的应用:

  • 分治:归并排序使用分治思想将数组分为较小的子数组,然后合并排序后的子数组以获得排序的整个数组。
  • 动态规划:0/1背包问题中,动态规划用于确定哪些物品应该放入背包以最大化总价值。
  • 贪心:霍夫曼编码算法通过贪心思想构建变长编码以最小化总编码长度。
  • 回溯:在八皇后问题中,回溯算法用于逐行放置皇后,如果无法继续下去,则回溯到上一行并尝试其他位置。

这些思想不仅在上述问题中有应用,还在各种领域中发挥作用,帮助解决复杂的计算问题。选择哪种算法思想通常依赖于问题的性质和约束条件。

  • 11
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值