【python】蒙特卡洛法计算圆周率pi

本文介绍了利用蒙特卡洛方法计算圆周率π的原理,通过在一个边长为2的正方形内随机生成点,统计落在半径为1的圆内的点数比例,从而逼近π/4。根据这个比例乘以4得到π的估值。文中还提供了Python代码实现,随着随机点数的增加,计算结果会更接近实际的π值。
摘要由CSDN通过智能技术生成

描述
蒙特卡洛(Monte Carlo)方法是由数学家冯·诺伊曼提出的,诞生于上世纪40年代美国的“曼哈顿计划”。蒙特卡洛是一个地名,位于赌城摩纳哥,象征概率。蒙特卡洛方法的原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值。‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
用蒙特卡洛方法计算圆周率π的原理如下:一个边长为2r的正方形内部相切一个半径为r的圆,圆的面积是πr2,正方形的面积为4r2,二者面积之比是π/4,因为比值与r大小无关,所以可以假设半径
r的值为1。

在这个正方形内部,随机产生n个点,坐标为(x,y),当随机点较多时,可以认为这些点服从均匀分布的规律。计算每个点与中心点的距离是否大于圆的半径(x2+y2>r2),以此判断是否落在圆的内部。统计圆内的点数c,c与n的比值乘以4,就是π的值。理论上,n越大,计算的π值越准,但由于随机数不能保证完全均匀分布,所以蒙特卡洛法每次计算结果可能不同。‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
编程实现用蒙特卡洛方法计算π值,为了自动测评的需要,请先读入一个正整数sd作为随机数种子,并要求使用 x,y = random.uniform

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值