C++之eigen库学习 Eigen是一个高性能的C++模板库,专门用于线性代数、矩阵和向量运算。该库提供了一系列的类和函数,使开发者能够轻松进行各种数学计算,如矩阵乘法、矩阵分解(如QR分解、奇异值分解等)、特征值计算、求解线性方程组等。Eigen库广泛应用于科学计算、工程建模、机器学习、图形渲染等多个领域。它已经成为C++社区中最受欢迎和广泛使用的线性代数库之一,因为它提供了高效、稳定和功能丰富的数学计算工具。如果您对Eigen库或其他相关主题有进一步的问题或需要更详细的解释,请随时告诉我。我会尽量提供详尽和有用的信息。
C++ 之boost库学习 C++的Boost 文件系统库中有许多常用的函数可以帮助你进行文件和目录的操作。这些是 Boost 文件系统库中的一些其他常用函数,它们提供了更多的文件和目录操作功能,可以满足更多的需求。除了上面提到的常见函数外,Boost 文件系统库还提供了其他一些有用的函数。这些是 Boost 文件系统库中一些常见的函数,它们可以帮助你执行各种文件和目录操作。
深度学习之扩散模型(Diffusion model) 在每个时间步长上,根据权重 alphas 和 betas,将初始数据点与噪声相结合,生成新的数据点。在每个演示步骤中,通过调用 q_x 函数生成新的数据点,并在图表中以散点图的形式展示。这些超参数决定了正向扩散过程中的权重变化,并影响数据点在空间中的演变轨迹。通过调整超参数和观察结果,可以更好地理解数据的分布和特征,为后续的数据分析和建模工作提供参考。通过生成一个特定形状的数据集,并在每个时间步长上应用正向扩散过程和加噪过程,最终展示了数据点在空间中的演变过程。代码解析:正向扩散过程和加噪演示。
动态规划算法之最长公共子序列 然后调用上述两个函数计算最长公共子序列的动态规划矩阵和提取最长公共子序列。最后,输出最长公共子序列。中提取最长公共子序列。通过反向遍历矩阵,我们可以重建最长公共子序列的具体元素。通过填充这个矩阵,我们可以找到最长公共子序列的长度。: 这个函数计算最长公共子序列的动态规划矩阵。函数:在主函数中,我们定义了两个整数向量。: 这个函数用于初始化动态规划矩阵。: 这个函数用于从动态规划矩阵。,将其所有元素初始化为0。
动态规划算法之最长递增子序列 在这个例子中,使用动态规划的方式计算了以每个元素结尾的最长递增子序列的长度,然后通过比较这些长度找到最终的最长递增子序列的长度。这种方法避免了指数级的递归计算,提高了算法的效率。动态规划的核心思想是将一个复杂的问题分解成更简单的子问题,并通过解决子问题来构建原问题的解。动态规划的思想来解决。
C++ 图的表示之邻接矩阵和邻接表 这两个例子分别展示了邻接矩阵和邻接表表示图的方法。在实际应用中,选择使用邻接矩阵还是邻接表取决于图的稠密程度和具体的算法需求。邻接矩阵适用于稠密图,而邻接表适用于稀疏图。下面是一个简单的C++实例,演示了如何使用邻接矩阵和邻接表来表示图。
C++ 设计模式之观察者模式 学习设计模式时,最好的方式是通过实际的例程来加深理解。以下是一个简单的C++设计模式的例程,演示了观察者模式(Observer Pattern)的应用。观察者模式定义了一种一对多的依赖关系,使得当一个对象状态改变时,所有依赖它的对象都会得到通知并自动更新。
C++ 设计模式之单例模式 单例模式确保一个类只有一个实例,并提供一个全局访问点。以下是一个简单的C++例程,演示了单例模式的实现。在这个例子中,我们创建了一个名为 Singleton 的类,它只能创建一个实例。
C++之多线程(multi-thread) / 互斥锁,用于保护共享资源// 共享资源,存储数组的和// 计算数组的和的函数i < end;++i) {// 使用互斥锁保护对共享资源的访问// 创建一个包含整数的数组// 定义线程的数量// 计算每个线程的工作量// 创建线程数组// 启动线程++i) {// 等待所有线程完成// 输出最终的结果return 0;
C++之智能指针 !!! 一文读懂智能指针 !!! 和是C++标准库中的两种不同类型的智能指针,它们有一些关键的区别。newnew在选择使用还是时,取决于你的设计需求。如果能够确定对象拥有独占的所有权,并且不需要共享,那么是更轻量和合适的选择。如果需要在多个地方共享对象,并希望方便地传递所有权,那么是一个更适合的选择。