机器篇——决策树(六) 细说 评估指标的交叉验证

本小节,细说 评估指标的交叉验证。
 

三. 评估指标
3. 交叉验证(cross validation)
     (1). 概念
       交叉验证(cross validation, cv) 主要用于模型训练或建模应用中,如分类预测、PCR、PLS 回归建模等。在给定的样本空间中,拿出大部分样本的模型进行预测,并求这小部分样本的预测误差或预测精度,同时记录它们的加和平均值。这个过程迭代 k

 次,即 k

 折交叉。其中,把每个样本的预测误差平凡加和,称为 PRESS(Predicted Error Sum Of Squares)。

     (2). 目的
       ①. 用交叉验证的母的是为了得到可靠稳定的模型。在分类,建立 PC 或 PLS 模型时,一个很重要的因素是取多少个主成分的问题。用 cv 校验每个主成分下的 PRESS 值,选择 PRESS 值小的主成分数。或 PRESS 值不再变小时的主要分数。

       ②. 常用的精度测试方法主要是交叉验证,例如 10 折交叉验证(10-fold cross validation, 10-cv),将数据分成 10 份,轮流将其中 9 份做训练,1 份做验证,10 次的结果的均值作为对算法精度的估计,一般还需要进行多次 10-cv 求均值,例如:10 次 10-cv,以求更精确一点。

       ③. 交叉验证有时也称为交叉比对,如:10 折交叉比对。

     (3). 常见的交叉验证方式
       ①. Holdout 验证(留出法验证)

        a. 方法:

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值