本小节,细说 评估指标的交叉验证。
三. 评估指标
3. 交叉验证(cross validation)
(1). 概念
交叉验证(cross validation, cv) 主要用于模型训练或建模应用中,如分类预测、PCR、PLS 回归建模等。在给定的样本空间中,拿出大部分样本的模型进行预测,并求这小部分样本的预测误差或预测精度,同时记录它们的加和平均值。这个过程迭代 k
�
次,即 k
�
折交叉。其中,把每个样本的预测误差平凡加和,称为 PRESS(Predicted Error Sum Of Squares)。
(2). 目的
①. 用交叉验证的母的是为了得到可靠稳定的模型。在分类,建立 PC 或 PLS 模型时,一个很重要的因素是取多少个主成分的问题。用 cv 校验每个主成分下的 PRESS 值,选择 PRESS 值小的主成分数。或 PRESS 值不再变小时的主要分数。
②. 常用的精度测试方法主要是交叉验证,例如 10 折交叉验证(10-fold cross validation, 10-cv),将数据分成 10 份,轮流将其中 9 份做训练,1 份做验证,10 次的结果的均值作为对算法精度的估计,一般还需要进行多次 10-cv 求均值,例如:10 次 10-cv,以求更精确一点。
③. 交叉验证有时也称为交叉比对,如:10 折交叉比对。
(3). 常见的交叉验证方式
①. Holdout 验证(留出法验证)
a. 方法:

最低0.47元/天 解锁文章
4149

被折叠的 条评论
为什么被折叠?



