PCA(主成分分析)算法

原理:将数据从原来的坐标系转换到新的坐标系。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标系选择和第一个坐标轴正交且具有最大方差的方向。该过程一直重复,重复次数为原始数据中特征的数目。目的是降维且增加特征向量的数目,找到主要线性分量及其表征方式。

 例子及代码:

【实验步骤】

1、导入数据并切片:

import pandas as pd

Data=pd.read_excel('农村居民人均可支配收入来源2016.xlsx')

X=Data.iloc[:,1:]

2、标准化处理;

from sklearn.preprocessing import StandardScaler

scaler=StandardScaler()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值