FITC-PEG-FA,Folic acid-PEG-Fluorescein,叶酸PEG荧光素

●外观以及性质:
FITC-PEG-FA是一种绿色荧光叶酸-PEG衍生物,其激发/发射波长为~490 nm/~520 nm。荧光素标记的PEG叶酸是一种线性分子,叶酸连接到PEG链的一端,荧光素染料连接到另一个PEG端。叶酸也被称为维生素M、维生素B9或叶酸。叶酸是一种重要的生物活性分子,具有多种生物功能。它参与DNA的合成、修复和甲基化,并在许多生物反应中充当辅助因子。叶酸是细胞表面叶酸受体的配体。荧光素-PEG-叶酸具有很强的荧光性,是一种在体外和体内靶向和检测叶酸受体的荧光探针。

结构式:

●中文名:荧光素-聚乙二醇-叶酸,叶酸PEG荧光素

●英文名:Folic acid-PEG-Fluorescein,FITC-PEG-FA
【产品理化指标】:
CAS号:N/A
分子式:N/A
分子量:20000
规格包装:5mg,10mg,25mg,接受各种复杂PEGS定制服务,具体可以线上咨询商家

溶解性:溶于大部分有机溶剂,如:DCM、DMF、DMSO、THF等等,在水中有很好的溶解性

供应商:西安凯新生物科技有限公司​

【注意事项】:
1、本品应密封避光,储存于阴凉,干燥,通风处。
2、避免频繁解冻,现配现用,-20℃以下冰冻
3、仅用于科学研究或者工业应用等非医疗目的,非药用,非食用
【荧光类种类】
1、菁染料类:由奇数个碳原子组成共振次甲基(甲川基)共轭链并被两个含氮杂环封端构成的一类共轭有机小分子体系。常见的如CY3、CY3.5、CY5、CY5.5、CY7、CY7.5等,其有脂溶/水溶之分,还可修饰基团、蛋白、抗体等。
2、 荧光素及衍生物:与强碱反应生成荧光素盐,易溶于水,并有强烈绿色荧光,荧光量子产率0.65(pH=7水溶液)。常见的如FITC、6-FAM等。
3、罗丹明类:是由3、6位氨基取代的氧杂蒽母体与9位碳原子取代芳基构成的一类有机荧光染料。常见的如罗丹明B、罗丹明6G、罗丹明101等。
4、BODIPY类:氟化硼二吡咯类有较高的量子产率、高摩尔消光系数、良好的光学稳定性和对PH不敏感的优点被应用于生物标记、荧光探针及生物成像。
5、AF荧光染料:荧光AF染料是具有磺化基团的荧光物质。AF染料带负电荷,具有亲水性高、亮度高、光稳定性强、仪器相容性好、对pH不敏感等特点。AF染料的激发峰适用于激光光谱,发射峰较窄,抗猝灭性强,有利于多种荧光标记。

6、荧光标记葡聚糖:以FITC为例:FITC标记葡聚糖主要用于细胞和组织中渗透性和传递研究。可以通过活体荧光显微镜实时进行。该技术灵敏度极高,组织液体中浓度低至1μg/ml亦可检测出。FITC标记葡聚糖在细胞中亦可作为一种pH探针使用。

【相关荧光试剂类产品】
FITC-PEG-N3,Fluorescein-PEG-Azide,MW:3400 
FITC-PEG-FA,Fluorescein-PEG-Folic acid,MW:20000 
FITC-PEG-FA,Fluorescein-PEG-Folic acid,MW:5000 
FITC-PEG-FA,Fluorescein-PEG-Folic acid,MW:10000 
5-FITC-PEG4-Amine,Fluorescein-PEG4-NH2 
FITC-PEG-Biotin,Biotin-PEG-Fluorescein,MW:3400 
FITC-PEG-Biotin,Biotin-PEG-Fluorescein,MW:5000 
FITC-PEG-SH,Fluorescein-PEG-Thiol,MW:5000 
FITC-PEG-SH,Fluorescein-PEG-Thiol,MW:10000 
FITC-PEG-SH,Fluorescein-PEG-Thiol,MW:20000 
FITC-PEG-COOH,Fluorescein-PEG-Acid,MW:5000 
FITC-PEG-COOH,Fluorescein-PEG-Acid,MW:1000 
FITC-PEG-MAL,Maleimide-PEG-Fluorescein,MW:10000 
FITC-PEG-MAL,Maleimide-PEG-Fluorescein,MW:20000 
西安凯新生物科技有限公司提供各类荧光染料,小编WMJ后续会持续输出相关知识,动动各位小伙伴的手收藏吧。(以上试剂仅供科研实验)

OpenCV可以通过色彩空间转换函数和图像分割函数来实现光谱拆分应用示例-FITC检测。 首先,将彩色图像转换为HSV色彩空间,HSV色彩空间的H通道可以表示颜色的色相,S通道可以表示颜色的饱和度,V通道可以表示颜色的亮度。然后,根据需要对图像进行阈值分割,得到二值图像。最后,根据二值图像提取感兴趣区域并进行处理。 下面是一个简单的示例代码,用于检测FITC标记的细胞: ```python import cv2 # 读取彩色图像 image = cv2.imread('cell.jpg') # 将彩色图像转换为HSV色彩空间 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 设置阈值,提取FITC标记的细胞 low_green = (50, 50, 50) high_green = (70, 255, 255) mask = cv2.inRange(hsv, low_green, high_green) # 对二值图像进行形态学操作,去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # 提取感兴趣区域 contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 绘制感兴趣区域 for contour in contours: cv2.drawContours(image, [contour], 0, (0, 255, 0), 2) # 显示结果 cv2.imshow('FITC Detection', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上述代码中,`cv2.cvtColor`函数用于将彩色图像转换为HSV色彩空间,`cv2.inRange`函数用于根据阈值提取FITC标记的细胞,`cv2.morphologyEx`函数用于对二值图像进行形态学操作,去除噪点,`cv2.findContours`函数用于提取感兴趣区域,并使用`cv2.drawContours`函数绘制感兴趣区域。最后使用`cv2.imshow`函数显示结果。 注意,在使用`cv2.findContours`函数时,需要根据OpenCV的版本进行调整。在OpenCV 3.x版本中,`cv2.findContours`函数返回两个值,而在OpenCV 4.x版本中,`cv2.findContours`函数只返回一个值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值