一、小组线下组会总结
为了解决设计和研发智慧口腔医疗辅助诊断系统过程中存在的问题,团队成员与实验室博士学长进行问题讨论,更加清晰地明确了项目的目标,讨论了系统的主要功能,比如治疗建议、患者数据分析等,确定需要使用的技术栈,并探讨如何集成现有的医疗数据库和口腔健康记录。
二、数据收集与处理
数据收集方面:
实验室可提供患者诊断图像,如CBCT、口腔曲断图以及口腔相机拍摄的图像。小组在专业医学网站进行专业知识的爬取(以供给大模型的预料处理)。
数据处理方面:
首先进行数据清洗,去除不完整、错误或无关的数据。之后进行格式标准化,统一不同来源和格式的数据,如将所有图像调整为统一的分辨率和大小。最后进行数据增强,通过图像旋转、缩放、裁剪等手段增加图像数据的多样性,提高模型的泛化能力。
三、应用实现
团队讨论选取相应算法对图像进行特征点特征值分析处理,之后根据疾病种类和临床案例,动态调整特征值的阈值进行特征值和病症判定,并对模型做出提示。在用户提问后,模型给出诊断结果并给出建议。
四、WEB应用
1.GUI包括界面:
1.1.登录注册:用户的注册、登录界面
1.2.信息编辑与维护:用户以及账号信息编辑填写界面
1.3.交互:用户与大模型/智能体交互界面
1.4.用户反馈与改进:设计用户反馈机制,收集用户意见和建议,及时改进界面设计和功能体验。
2.性能方面:
2.1.WEB服务器设计上需要具备处理高并发请求的能力,确保至少能够同时处理100万(10^5)个并发请求。当接收到超过其即时处理能力的请求时,服务器应将这些额外的请求按照它们到达的顺序排队等待处理。重要的是,系统必须保证每个请求都会在有限的时间内得到处理,防止任何请求被无限期地置于等待状态。
2.2.对于系统的响应速度,我们通过一个更具体的数学模型来进行规范:设定当前处理的并发请求数量为U,等待处理的请求队列长度为W。假设到目前为止,系统已经处理了Q个请求(编号从0开始)。考虑到最近一批处理的请求,即从第max(0, Q-U-W)到第(Q-1)个请求,这批请求的处理总时间为T。在此基础上,对于当前需要处理的U+W个请求,我们设定一个目标响应时间上限,该上限是T时间的一个百分比(通过调整因子δ表示,δ的取值范围是0到1之间的任何值)。这意味着,随着请求量的变化,系统的响应时间将动态调整,但始终保持在一个合理的范围内,以优化用户体验。
3.安全性方面
3.1.数据隐私保护:严格保护用户数据隐私,采取加密、匿名化等措施保障用户数据安全。
3.2.漏洞修复与安全更新:建立漏洞管理机制,及时修复发现的安全漏洞,并定期更新系统以防止已知安全风险。