积木画:
问题描述
小明最近迷上了积木画, 有这么两种类型的积木, 分别为 II 型(大小为 2 个单位面积) 和 LL 型 (大小为 3 个单位面积):
同时, 小明有一块面积大小为 2 \times N2×N 的画布, 画布由 2 \times N2×N 个 1 \times 11×1 区域构 成。小明需要用以上两种积木将画布拼满, 他想知道总共有多少种不同的方式? 积木可以任意旋转, 且画布的方向固定。
输入格式
输入一个整数 NN,表示画布大小。
输出格式
输出一个整数表示答案。由于答案可能很大,所以输出其对 1000000007 取模后的值。
样例输入
3
样例输出
5
样例说明
五种情况如下图所示,颜色只是为了标识不同的积木:
评测用例规模与约定
对于所有测试用例,1 ≤ N ≤ 100000001≤N≤10000000.
运行限制
- 最大运行时间:3s
- 最大运行内存: 512M
解析:
public class Main { static final int MOD = 1000000007; public static void main(String[] args) { Scanner scanner=new Scanner(System.in); int n=scanner.nextInt(); int[][] dp = new int[n + 1][4]; dp[0][3] = 1; for (int i = 1; i <= n; i++) { dp[i][0] = dp[i - 1][3]; dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % MOD; dp[i][2] = (dp[i - 1][0] + dp[i - 1][1]) % MOD; dp[i][3] = (((dp[i - 1][0] + dp[i - 1][1]) % MOD + dp[i - 1][2]) % MOD + dp[i - 1][3]) % MOD; } System.out.println(dp[n][3]); } }
多米诺和托米诺平铺,看这道题的解析就行了