MapReduce-

本文详细介绍了使用Hadoop MapReduce实现的基本Word Count案例,展示了如何通过Mapper和Reducer阶段处理文本数据,计算单词频率。从输入文件中提取单词,然后进行计数,并将结果保存到输出文件中。
摘要由CSDN通过智能技术生成

Map类

 

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

 

import java.io.IOException;

 

/*

*LongWritable 偏移量 long,表示改行在文件中的位置,而不是行号

* Text map阶段的输入数据 一行文本信息 字符串类型 String

* Text map阶段的数据字符串类型String

* IntWritable map阶段输出的values类型,对应Java中int型,表示行号

* */

 

public class WordCountMap extends Mapper<LongWritable,Text, Text, IntWritable> {

    @Override

    protected void map(LongWritable key,Text value,Context context) throws IOException, InternalError, InterruptedException {

        //读取每行文本

        String line = value.toString();

        //splite拆分每行

        String[] words = line.split(" ");

        //取出每个单词

        for(String word :words){

            //将单词转为Text类型

            Text wordText = new Text(word);

            //将1转变为IntWritable

            IntWritable outValues = new IntWritable(1);

            //写出单词,跟对应1

            context.write(wordText,outValues);

        }

    }

}

 

Reduce类

 

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

 

import java.io.IOException;

/*

* Text 输入字符串类型,序列化

* IntWritable 输入一串1,序列化

* Text 输出的字符串类型 String

* IntWritable 输出求和数组,序列化

* */

public class WordCountReduce extends Reducer<Text, IntWritable,Text,IntWritable> {

    /*

    * key 输入单词名字

    * values 输入一串1

    * context 输出的工具

    * */

    @Override

    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

        int sum = 0;

        for(IntWritable number:values){

            sum += number.get();

        }

        context.write(key,new IntWritable(sum));

 

    }

}

 

连接实践类

 

import java.io.IOException;

import java.util.*;

 

import org.apache.hadoop.examples.SecondarySort;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

 

public class WordCount {

 

    public static void main(String[] args) throws Exception {

// 定义配置对象

        Configuration conf = new Configuration();

// 定义一个工作任务对象

        Job job = Job.getInstance(conf);

// 获取map阶段的一个对象

        job.setMapperClass(WordCountMap.class);

// 指定map阶段输出的key类型

        job.setOutputKeyClass(Text.class);

// 指定map阶段输出的values类型

        job.setOutputValueClass(IntWritable.class);

// map阶段的输出文件

        FileInputFormat.setInputPaths(job,new Path("C:/Users/夕七/Desktop/123.txt"));

 

// 指定Reduce的类

        job.setReducerClass(SecondarySort.Reduce.class);

    // 指定reduce阶段输出的key类型

        job.setOutputKeyClass(Text.class);

// 指定reduce阶段输出的values类型

        job.setOutputValueClass(IntWritable.class);

// 指定Reduce阶段输出文件

        FileOutputFormat.setOutputPath(job,new Path("C:/Users/夕七/Desktop/234.txt"));

 

        job.waitForCompletion(true);

    }

}

hadoop-mapreduce-client-core是Hadoop分布式计算框架中的核心模块之一。它主要包含了Hadoop MapReduce的核心功能和API接口,是实现MapReduce编程模型的必备组件。 Hadoop MapReduce是一种用于大规模数据处理的编程模型,其核心思想是将大规模数据集分解成多个较小的数据块,分别在集群中的不同机器上进行处理,最后将结果整合。hadoop-mapreduce-client-core模块提供了与MapReduce相关的类和方法,方便开发者实现自定义的Map和Reduce任务。 具体来说,hadoop-mapreduce-client-core模块包含了以下重要组件和功能: 1. Job:Job表示一个MapReduce任务的定义和描述,包括输入路径、输出路径、Mapper和Reducer等。 2. Mapper:Mapper是MapReduce任务中的映射函数,它负责将输入数据转换成<key, value>键值对的形式。 3. Reducer:Reducer是MapReduce任务中的归约函数,它按照相同的key将所有Mapper输出的value进行聚合处理。 4. InputFormat:InputFormat负责将输入数据切分成多个InputSplit,每个InputSplit由一个Mapper负责处理。 5. OutputFormat:OutputFormat负责将Reducer的输出结果写入指定的输出路径中。 使用hadoop-mapreduce-client-core模块,开发者可以基于Hadoop分布式计算框架快速开发并行处理大规模数据的应用程序。通过编写自定义的Mapper和Reducer,可以实现各种类型的分布式计算,如数据清洗、聚合分析、机器学习等。 总之,hadoop-mapreduce-client-core是Hadoop分布式计算框架中的核心模块,提供了实现MapReduce编程模型所需的基本功能和API接口。使用该模块,开发者可以利用Hadoop的分布式计算能力,高效地处理和分析大规模数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值