使用weka软件进行回归、分类

一、实验目的 

  通过完成weka软件实验,达到实现运用weka软件进行机器学习对数据回归和分类的目的,熟悉练习软件的各项操作。 

二、实验准备 

  1. 实验平台 

Windows10操作系统、weka软件 

  1. 实验数据 

个人数据集、Iris数据集

   

三、实验步骤

(1)回归

数据介绍

为探究研发费用、管理费用、营销费用与利润的相关关系,使用神经网络预测利润。本实验选取训练数据35组,测试数据14组,自变量为研发费用、管理费用、营销费用,因变量为利润,进行多元回归。

加载训练数据

选择训练模型
神经网络模型

设置隐藏层数量和学习率

设置验证方案Test options

(1)Use training set(使用训练集):直接将训练集实例用于测试(不能反应分类器的泛化性能)

(2)Supplied test set(提供测试集):单击set允许用户选择测试集文件

(3)Cross-validation(交叉验证):通过交叉验证评价分类器。在Folds文本框中输入交叉验证的折数,默认为10折

(4)Percentage split(按比例分割):从数据集中取出默认百分比的数据用作训练集,其他用作测试集。取出作为训练集的数据量在%后的文本框内,默认为66%

设置因变量

查看结果指标
  1. MAE:平均绝对误差,即对预测值与真实值之差的绝对值求平均
  2. RMSE:均方根误差,即对预测值与真实值之差的平方求平均,再开平方
  3. RAE:分子:对预测值与真实值之差的绝对值求和;分母:对均值与真实值之差的绝对值求和
  4. RRSE:分子:对预测值与真实值之差的平方求和;分母:对均值与真实值之差的平方求和;分子除以分母后开平方

利用训练后的模型预测
加载测试数据

验证测试数据

误差可视化

查看预测结果

使用matplotlib进行可视化

随机森林模型

利用训练后的模型进行预测

误差可视化

查看预测结果

使用matplotlib进行可视化

(2)分类

数据介绍

Iris数据集是常用的分类实验数据集。该数据集包含150条数据,每条数据包含4个属性(花萼长度,花萼宽度,花瓣长度,花瓣宽度)和1个类别。目的是根据属性值预测鸢尾花卉属于三个种类(setosa,versicolor,virginica)中的哪一类。用Weka自带的数据集进行演示,选择iris(鸢尾花)数据集,点击打开。

选择分类器

进入分类操作,点击Classify进入分类界面,点击Choose选择分类器

神经网络分类

Percentage split选项,当数据集没有测试集时,通过设置右侧的数字来将数据集分为训练集和测试集,图中的数字为66,其代表将数据集66%的数据作为训练集,其余34%的数据(51个实例)作为测试集。

Summary参数:

  1. Correctly Classified Instances(正确分类的实例):显示正确分类的实例的绝对数量和百分比
  2. Incorrectly Classified Instances(错误分类的实例):显示错误分类实例的绝对数量和百分比
  3. Kappa statistic(Kappa统计):显示Kappa统计量,[-1,1]范围的小数。Kappa统计指标用于评判分类器结果与随机分类的差异度。K=1表明分类器完全与随即分类相异,K=0表明分类器与随机分类相同(即分类器没有效果),K=-1表明分类器比随机分类还要差
  4. Mean absolute error(平均绝对误差)
  5. Root mean squared error(均方根误差)
  6. Relative absolute error(相对绝对误差)
  7. Root relative squared error(相对均方根误差)
  8. Total Number of Instances(实例总数)

综合以上指标,评估模型的分类精度。51个实例中有50个分类正确,1个分类错误,分类效果较好。

决策树分类

51个实例中有47个分类正确,4个分类错误,分类效果比神经网络欠佳。

可视化

还可以将生成的决策树可视化,在Result list中选中结果,右键选择Visualize tree

随机森林分类

随机森林指利用 Bagging 集成多棵 CART(Classification and Regression Tree)决策树的机器

学习方法。

51个实例中有49个分类正确,2个分类错误,分类效果比决策树稍好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木木(。・ω・。)ノ♡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值