fragstats软件计算景观格局指数

1 内容

  1. 从斑块、类型、景观三个水平上进行景观格局指数计算
  2. 基于景观格局指数对结果进行分析

2 实验操作

1.数据介绍:E:\LCA\lca_raster101.tif 广州市中心城区土地利用数据,9类(10米分辨率)

2.计算指数

Patch metics

Class metrics

Landscape metrics

面积 AREA

总面积 CA/TA

总面积 CA/TA

周长 PERIM

景观百分比 PLAND

斑块密度 PD

周长面积比 PARA

最大斑块指数 LPI

最大斑块指数 LPI

形状指数 SHAPE

斑块数量 NP

香浓多样性指数 SHDI

斑块密度 PD

景观形状指数 LSI

周长面积分维 PAFRAC

聚集指数 AI

形状指数分布 SHAPE_MN、AM

周长面积比 PARA_MN(算术平均)、AM(加权平均)

3.软件界面

界面可分为4部分:工具栏、参数设定区、景观指数选择区和运行状态栏。

  • 工具栏:创建或打开景观分析任务(因为景观指数很多,但常用的指数较为固定,每次设置较为复杂,配置好的参数和景观指数往往可以多次使用)、保存、运行;
  • 参数设置区、景观指数选择区;
  • 运行状态栏:便于查看运行状态以及可能出现的问题。

4.新建模型,加载数据。New一个任务工程,Add Layer 添加待分析图层。图层格式有一定要求,一般选择GDAL Geo TIFF也就是tif格式(如果用aecgis导出选择TIFF格式即可) 

5.使用8近邻规则,分别勾选斑块Patch、类型Class、景观landscape尺度,且为每个斑块分配一个ID。8近邻相比4近邻更为平滑,但计算也相对较慢。

2.1 斑块尺度Patch metics

  1. 计算面积AREA、周长指数PERIM

2.计算周长面积比PARA、形状指数SHAPE

2.2 类型尺度Class metrics

2.3 景观尺度Landscape metrics

2.4 运行

2.5 保存并查看结果

  1. adj文件是各类型统计的矩阵
  2. class、land、patch文件得到三个不同尺度水平上计算的指数

3.用excel表格分别打开三个尺度水平上的结果文件

  • Patch

  • Class

  • Land

3 实验结果分析

  1. 以class类型尺度水平为例,将class.xls链接到数据属性表,并对聚集度指数AI进行可视化
  2. 聚集度指数基于同类型斑块像元间的公共边界长度,其表达式如图所示。聚合度指数(Aggregation Index,AI),AI∈(0,100]。AI考察了每一种景观类型斑块间的连通性。取值越小,景观越离散。

图 1 广州市中心城区聚集度指数分布情况

图 2 各土地利用类型的聚集度指数均值

3.综合以上结果,由图1可知,白云区西北地区AI指数最高,为87.8414,说明此处景观较为破碎密集;荔湾区聚集度指数较低,数值大概在60-70之间,说明荔湾区景观较为连续。此外,由图可知,聚集度有较强的空间异质性,同一区域聚集度差异可能很大。

4.由图2可知,耕地类型的聚集度指数最高,表明人为因素会对自然景观聚集程度产生较大影响;道路聚集度指数最低,道路一般是连续的条状地带,聚集度较低,结果符合常理。

### 如何在 ArcGIS 中使用 Fragstats 计算景观格局指数 #### 准备工作 为了使Fragstats能够顺利运行并处理来自ArcGIS的数据,需确保安装了兼容版本的软件Fragstats4.2支持与ArcGIS10.0及其以下版本之间的数据交互操作,这意味着可以通过ArcGIS10的Spatial Analyst扩展模块来加载和准备用于分析的空间栅格(Grid)文件[^1]。 #### 数据预处理 当准备好要分析的地图层之后,应该先将其转换成适合Fragstats使用的格式。这通常涉及到将矢量图层转化为栅格格式,并设置合适的像元大小和分类体系以便于后续的景观结构特征量化过程。此步骤可以在ArcGIS环境中完成,利用其中提供的工具如“Feature to Raster”来进行必要的变换[^3]。 #### 启动 Fragstats 并配置参数 启动Fragstats程序后,进入Analysis Parameter界面设定所需的计算选项。这里可以选择不同的尺度级别——即针对单个斑块(Patch),特定类型的覆盖物(Class),或是整个研究区(Landscape)—来进行指标评估;同时也能挑选具体的度量标准以反映不同方面的空间模式特性[^2]。 #### 执行计算 一旦所有的前期准备工作就绪,就可以开始正式执行计算任务了。对于较大的研究区域或复杂的多维矩阵运算而言,可能需要等待较长时间才能获得最终的结果集。因此建议提前规划好计算机的工作安排,避免中途被打断影响效率。 #### 结果解释与应用 得到由Fragstats输出的一系列统计数值以后,应当依据实际的研究目标对其进行解读。这些定量化的描述不仅有助于加深对现有生态系统的理解,而且还可以作为决策支持的基础资料服务于环境保护政策制定等领域内的重要议题探讨之中。 ```python # Python脚本示例:从ArcPy导出栅格至ASCII格式供Fragstats读取 import arcpy input_raster = "path_to_your_raster" output_ascii = "path_for_output_ascii" arcpy.RasterToASCII_conversion(input_raster, output_ascii) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木木(。・ω・。)ノ♡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值