给你一个下标从 1 开始的整数数组 numbers
,该数组已按 非递减顺序排列 ,请你从数组中找出满足相加之和等于目标数 target
的两个数。如果设这两个数分别是 numbers[index1]
和 numbers[index2]
,则 1 <= index1 < index2 <= numbers.length
。
以长度为 2 的整数数组 [index1, index2]
的形式返回这两个整数的下标 index1
和 index2
。
你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。
你所设计的解决方案必须只使用常量级的额外空间。
示例 1:
输入:numbers = [2,7,11,15], target = 9 输出:[1,2] 解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
示例 2:
输入:numbers = [2,3,4], target = 6 输出:[1,3] 解释:2 与 4 之和等于目标数 6 。因此 index1 = 1, index2 = 3 。返回 [1, 3] 。
示例 3:
输入:numbers = [-1,0], target = -1 输出:[1,2] 解释:-1 与 0 之和等于目标数 -1 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
方法一:二分法
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target)
{
int n=numbers.size();
for(int i=0;i<n;++i)
{
int low=i+1,high=n-1;
while(low<=high)
{
int mid=(low+high)/2;
if(numbers[mid]==target-numbers[i])
{
return {i+1,mid+1};
}
else if(numbers[mid]>target-numbers[i])
{
high=mid-1;
}
else
{
low=mid+1;
}
}
}
return {-1,-1};
}
};
方法二:双指针
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target)
{
int low=0,high=numbers.size()-1;
while(low<high)
{
int sum=numbers[low]+numbers[high];
if(sum==target)
{
return {low+1,high+1};
}
else if(sum<target)
{
++low;
}
else
{
--high;
}
}
return {-1,-1};
}
};
方法三:哈希
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target)
{
vector<int> res{-1,-1};
int n=numbers.size();
if(n==0)
{
return res;
}
unordered_map<int,int> um;
um[numbers[0]]=1;
for(int i=1;i<n;++i)
{
if(um.find(target-numbers[i])!=um.end()&&um[target-numbers[i]]!=i+1)
{
res[0]=um[target-numbers[i]];
res[1]=i+1;
break;
}
um[numbers[i]]=i+1;
}
return res;
}
};