分布式事务
分布式事务问题
本地事务
四个原则:
- 原子性
- 事务中的所有操作,要么全部成功,要么全部失败
- 一致性
- 要保证数据库内部完整性约束,声明性约束
- 隔离性
- 对同一资源操作的事务不能同时发生
- 持久性
- 对数据库做的一切修改将永久保存,不管是否出现故障
分布式事务
分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:
- 跨数据源的分布式事务
- 跨服务的分布式事务
- 综合情况
理论基础
CAP定理
分布式系统有三个指标:
- Consistency(一致性)
- Availability(可用性)
- Partition tolerance(分区容错性)
这三个指标不可能同时做到。这个结论就叫做 CAP 定理。
- Consistency(一致性): 用户访问分布式系统中的任意节点,得到的数据必须一致
Availability(可用性): 用户访问集群中的任意节点,必须能得到响应,而不是超时或拒绝
(1). Partition(分区): 因为网络故障或者其他原因导致分布式系统中的部分节点失去连接,形成独立分区
(2). Tolerance(容错): 在集群出现分区时,整个系统也要持续对外提供服务
矛盾:
(1).在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须要对外保证服务.因此Partition Tolerance不可避免
(2).当节点接收到cinder数据变更时,就会出现问题:
如果此时要保证
一致性
,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态不可用 如果此时要保证可用性,就不能等待网络恢复,那多个数据库之间就会出现数据不一致
也就是说,在P一定会出现的情况下,A和C之间只能实现一个
BASE理论
BASE理论是对CAP的一种解决思路,包含三个思想:
- Basically Available(基本可用) : 分布式系统在出现故障时,允许损失部分可用性,及保证核心可用.
- Soft State(软状态): 在一定时间内,允许出现中间状态,比如临时的不一致状态
- Eventually Consistent(最终一致性): 虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致
解决分布式事务的思路
分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,两种解决模式:
- AP模式: 各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致.
- CP模式: 各子事务执行后相互等待,同时提交,同时回滚,达成强一致,但事务等待过程中,处于弱可用状态
Seata
Seata的架构
Seata事务管理中有三个重要的角色:
- TC(Transaction Coordinator) - 事务协调者: 维护全局和分支事务的状态,协调全局事务提交或回滚
- TM(Transaction Manager) - 事务管理器: 定义全局事务的范围,开始全局事务,提交或回滚全局事务
- RM(Resource Manager) - 资源管理器: 管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚
Seata基于上述架构提供了四种不同的分布式事务解决方案:
- XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
- AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
- TCC模式:最终一致的分阶段事务模式,有业务侵入
- SAGA模式:长事务模式,有业务侵入
无论哪种方案,都离不开TC,也就是事务的协调者。
部署Seata的tc-server
1.我们要下载seata-server包,地址在http😕/seata.io/zh-cn/blog/download.html
2.解压后,修改配置,修改conf目录下的registry.conf文件:
内容如下:
registry {
# tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
type = "nacos"
nacos {
# seata tc 服务注册到 nacos的服务名称,可以自定义
application = "seata-tc-server"
serverAddr = "127.0.0.1:8848"
group = "DEFAULT_GROUP"
namespace = ""
cluster = "SH"
username = "nacos"
password = "nacos"
}
}
config {
# 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
type = "nacos"
# 配置nacos地址等信息
nacos {
serverAddr = "127.0.0.1:8848"
namespace = ""
group = "SEATA_GROUP"
username = "nacos"
password = "nacos"
dataId = "seataServer.properties"
}
}
微服务集成Seata
引入依赖
<!--seata-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-seata</artifactId>
<exclusions>
<!--版本较低,1.3.0,因此排除-->
<exclusion>
<artifactId>seata-spring-boot-starter</artifactId>
<groupId>io.seata</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>io.seata</groupId>
<artifactId>seata-spring-boot-starter</artifactId>
<!--seata starter 采用1.4.2版本-->
<version>${seata.version}</version>
</dependency>
配置TC地址
seata:
registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
type: nacos # 注册中心类型 nacos
nacos:
server-addr: 127.0.0.1:8848 # nacos地址
namespace: "" # namespace,默认为空
group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
application: seata-tc-server # seata服务名称
username: nacos
password: nacos
tx-service-group: seata-demo # 事务组名称
service:
vgroup-mapping: # 事务组与cluster的映射关系
seata-demo: SH
XA模式
XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
两阶段提交
XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。
一阶段:
- 事务协调者通知每个事物参与者执行本地事务
- 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁
二阶段:
- 事务协调者基于一阶段的报告来判断下一步操作
- 如果一阶段都成功,则通知所有事务参与者,提交事务
- 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务
Seata的XA模型
Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
RM一阶段的工作:
① 注册分支事务到TC
② 执行分支业务sql但不提交
③ 报告执行状态到TC
TC二阶段的工作:
-
TC检测各分支事务执行状态
a.如果都成功,通知所有RM提交事务
b.如果有失败,通知所有RM回滚事务
RM二阶段的工作:
- 接收TC指令,提交或回滚事务
优缺点
XA模式的优点是什么?
- 事务的强一致性,满足ACID原则。
- 常用数据库都支持,实现简单,并且没有代码侵入
XA模式的缺点是什么?
- 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
- 依赖关系型数据库实现事务
实现XA模式
Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:
1)修改application.yml文件(每个参与事务的微服务),开启XA模式:
seata:
data-source-proxy-mode: XA
2)给发起全局事务的入口方法添加@GlobalTransactional注解:
本例中是OrderServiceImpl中的create方法.
3)重启服务并测试
重启order-service,再次测试,发现无论怎样,三个微服务都能成功回滚。
AT模式
基本流程图:
阶段一RM的工作:
- 注册分支事务
- 记录undo-log(数据快照)
- 执行业务sql并提交
- 报告事务状态
阶段二提交时RM的工作:
- 删除undo-log即可
阶段二回滚时RM的工作:
- 根据undo-log恢复数据到更新前
AT与XA的区别
简述AT模式与XA模式最大的区别是什么?
- XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
- XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
- XA模式强一致;AT模式最终一致
脏写问题
在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:
解决思路就是1引入了全局锁的概念。在提交本地事务释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。
但是,如果同时存在受seata管理的事务和不受seata管理的事务,则还是可能导致修改丢失,因此seata在记录redo log的时候要同时记录before image和after image。
优缺点
AT模式的优点:
- 一阶段完成直接提交事务,释放数据库资源,性能比较好
- 利用全局锁实现事务的隔离
- 没有代码侵入,框架自动完成回滚和提交
AT模式的缺点:
- 两阶段之间属于软状态,属于最终一致
- 框架的快照功能会影响性能,但比XA模式要好很多
- 如果同时存在不受seata管理的本地事务,则可能会导致seata回滚失败
实现AT模式
修改application.yml文件,将事务模式修改为AT模式即可:
seata:
data-source-proxy-mode: AT # 默认就是AT
演示AT回滚失败
如果after-image跟数据库的数据不一致会导致无法回滚
1)在OrderService中添加FailureHandler,在onRollbackRetrying中打断点
2)修改OrderService中feign的超时时间配置
feign:
client:
config:
default:
read-timeout: 30000
connect-timeout: 30000
3)debug模式运行OrderService,并在扣减余额和扣减库存的feign调用方法上打断点
4)访问下单接口:http://localhost:8082/order,运行完扣用户余额以后,停在断点上,然后新发起一个不受seata事务管理的扣减余额的请求:http://localhost:8083/account/user202103032042012/100,然后继续执行扣减库存的请求,库存不够,导致回滚,可以看到回滚失败,进入FailureHandler,同时数据库中的lock_table和undo_log中的数据一直无法删除。
TCC模式
TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:
-
Try:资源的检测和预留;
-
Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。
-
Cancel:预留资源释放,可以理解为try的反向操作。
Seata的TCC模型
Seata中的TCC模型依然延续之前的事务架构,如图:
优缺点
TCC模式的每个阶段是做什么的?
- Try:资源检查和预留
- Confirm:业务执行和提交
- Cancel:预留资源的释放
TCC的优点是什么?
- 一阶段完成直接提交事务,释放数据库资源,性能好
- 相比AT模型,无需生成快照,无需使用全局锁,性能最强
- 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库
TCC的缺点是什么?
- 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
- 软状态,事务是最终一致
- 需要考虑Confirm和Cancel的失败情况,做好幂等处理
事务悬挂和空回滚
空回滚
当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚。
执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。
业务悬挂
对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂。
执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂
3)1.5.1 新版本
1.5.1版本已经解决了幂等、空回滚和悬挂问题
参考:https://seata.io/zh-cn/blog/seata-tcc-fence.html
SAGA模式
Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。
其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。
Seata官网对于Saga的指南:https://seata.io/zh-cn/docs/user/saga.html
原理
在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。
分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。
Saga也分为两个阶段:
- 一阶段:直接提交本地事务
- 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚
优缺点
优点:
- 事务参与者可以基于事件驱动实现异步调用,吞吐高
- 一阶段直接提交事务,无锁,性能好
- 不用编写TCC中的三个阶段,实现简单
缺点:
- 软状态持续时间不确定,时效性差
- 没有锁,没有事务隔离,会有脏写
四种模式对比
我们从以下几个方面来对比四种实现:
- 一致性:能否保证事务的一致性?强一致还是最终一致?
- 隔离性:事务之间的隔离性如何?
- 代码侵入:是否需要对业务代码改造?
- 性能:有无性能损耗?
- 场景:常见的业务场景
高可用
Seata的TC服务作为分布式事务核心,一定要保证集群的高可用性。
高可用架构模型
搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。
实现高可用
具体实现请参考资料提供的文档《seata的部署和集成.md》
优点:
- 事务参与者可以基于事件驱动实现异步调用,吞吐高
- 一阶段直接提交事务,无锁,性能好
- 不用编写TCC中的三个阶段,实现简单
缺点:
- 软状态持续时间不确定,时效性差
- 没有锁,没有事务隔离,会有脏写
四种模式对比
我们从以下几个方面来对比四种实现:
- 一致性:能否保证事务的一致性?强一致还是最终一致?
- 隔离性:事务之间的隔离性如何?
- 代码侵入:是否需要对业务代码改造?
- 性能:有无性能损耗?
- 场景:常见的业务场景
高可用
Seata的TC服务作为分布式事务核心,一定要保证集群的高可用性。
高可用架构模型
搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。
实现高可用
具体实现请参考资料提供的文档《seata的部署和集成.md》